Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans
详细信息    查看全文
  • 作者:V. F. S. Dubois ; W. E. A. de Witte ; S. A. G. Visser ; M. Danhof…
  • 关键词:cardiovascular safety ; drug development ; interspecies differences ; PKPD modelling ; QT interval prolongation
  • 刊名:Pharmaceutical Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:33
  • 期:1
  • 页码:40-51
  • 全文大小:1,938 KB
  • 参考文献:1.Haddad PM, Anderson IM. Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs. 2002;62:1649–71.PubMed CrossRef
    2.Buckingham TA, Bhutto ZR, Telfer EA, Zbilut J. Differences in corrected QT intervals at minimal and maximal heart rate may identify patients at risk for torsades de pointes during treatment with antiarrhythmic drugs. J Cardiovasc Electrophysiol. 1994;5:408–11.PubMed CrossRef
    3.Pollard CE, Abi Gerges N, Bridgland-Taylor MH, Easter A, Hammond TG, Valentin J-P. An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br J Pharmacol. 2010;159:12–21.PubMed PubMedCentral CrossRef
    4.Li G-R, Dong M-Q. Pharmacology of cardiac potassium channels. Adv Pharmacol. 2010;59:93–134. Elsevier Inc.PubMed CrossRef
    5.Gintant G. An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther. 2011;129:109–19. Elsevier Inc.PubMed CrossRef
    6.Leishman DJ, Beck TW, Dybdal N, Gallacher DJ, Guth BD, Holbrook M, et al. Best practice in the conduct of key nonclinical cardiovascular assessments in drug development: current recommendations from the Safety Pharmacology Society. J Pharmacol Toxicol Methods. 2012;65:93–101. Elsevier Inc.PubMed CrossRef
    7.Bonifacio MJ, Loureiro AI, Torrao L, Fernandes-lopes C, Wright L, Pinho MJ, et al. Species differences in pharmacokinetic and pharmacodynamic properties of nebicapone. Biochem Pharmacol. 2009;78:1043–51.PubMed CrossRef
    8.Sahota T, Sanderson I, Danhof M, Della Pasqua O. Model-based analysis of thromboxane B2 and prostaglandin E2 as biomarkers in the safety evaluation of naproxen. Toxicol Appl Pharmacol. 2014;278:209–19. Elsevier Inc.PubMed CrossRef
    9.Holzgrefe H, Ferber G, Champeroux P, Gill M, Honda M, Greiter-Wilke A, et al. Preclinical QT safety assessment: cross-species comparisons and human translation from an industry consortium. J Pharmacol Toxicol Methods. 2014;69:61–101. Elsevier Inc.PubMed CrossRef
    10.Valentin J-P. Themed section QT safety editorial reducing QT liability and proarrhythmic risk in drug. Br J Pharmacol. 2010;159:5–11.PubMed PubMedCentral CrossRef
    11.Bloomfield D, Krishna R. Commentary on the clinical relevance of concentration/QTc relationships for new drug candidates. J Clin Pharmacol. 2008;48:6–8.PubMed CrossRef
    12.Ollerstam A, Visser SAGG, Persson AH, Eklund G, Nilsson LB, Forsberg T, et al. Pharmacokinetic-pharmacodynamic modeling of drug-induced effect on the QT interval in conscious telemetered dogs. J Pharmacol Toxicol Methods. 2006;53:174–83.PubMed CrossRef
    13.Ollerstam A, Persson AH, Visser SAG, Fredriksson JM, Forsberg T, Nilsson LB, et al. A novel approach to data processing of the QT interval response in the conscious telemetered beagle dog. J Pharmacol Toxicol Methods. 2007;55:35–48. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16581270 .PubMed CrossRef
    14.Chain ASY, Dubois VFS, Danhof M, Sturkenboom MCJ, Della Pasqua O, TI Pharma PKPD Platform Cardiovascular Safety Project Team. Identifying the translational gap in the evaluation of drug-induced QTc-interval prolongation. Br J Clin Pharmacol. 2013;76:708–24.PubMed PubMedCentral CrossRef
    15.Chain ASY, Krudys KM, Danhof M, Della Pasqua O. Assessing the probability of drug-induced QTc-interval prolongation during clinical drug development. Clin Pharmacol Ther. 2011;90:867–75. Nature Publishing Group.PubMed CrossRef
    16.Dubois V, Yu H, Danhof M, Della Pasqua O, Project Team Cardiovascular Safety, Pkpd PTIP. Model-based evaluation of drug-induced QT(c) prolongation for compounds in early development. Br J Clin Pharmacol. 2014.
    17.Omata T, Kasai C, Hashimoto M, Hombo T. QT PRODACT: Comparison of non-clinical studies for drug-induced delay in ventricular repolarization and their role in safety evaluation in humans. J Pharmacol Sci. 2005;99:531–41.PubMed CrossRef
    18.Sugiyama A. Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. Br J Pharmacol. 2008;154:1528–37.PubMed PubMedCentral CrossRef
    19.Watson KJ, Gorczyca WP, Umland J, Zhang Y, Chen X, Sun SZ, et al. Pharmacokinetic-pharmacodynamic modelling of the effect of Moxifloxacin on QTc prolongation in telemetered cynomolgus monkeys. J Pharmacol Toxicol Methods. 2011;63:304–13. 2011/03/23 ed. Elsevier Inc.PubMed CrossRef
    20.Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. 3rd ed. Stockholm: Swedish Pharmaceutical Press; 2001. p. 275–80.
    21.R development Core Team. R: A language and environment for statistical computing. 2008. Available from: www.​R-project.​org .
    22.Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A, Spiegelhalter D, Carlin BBN. Bayesian measures of model complexity and fit. J R Stat Soc. 2002;64:583–639.CrossRef
    23.Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–72.CrossRef
    24.Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7:434–55.
    25.France NP, Della Pasqua O. The role of concentration-effect relationships in the assessment of QT c interval prolongation. Br J Clin Pharmacol. 2015;79:117–31.PubMed CrossRef
    26.Della Pasqua OE. Translational pharmacology : from animal to man and back. Drug Discov Today Technol. 2013;10:e315–7. Elsevier Ltd.PubMed CrossRef
    27.Jones SE, Shuba LM, Zhabyeyev P, Mccullough JR, Mcdonald TF. Differences in the effects of urinary incontinence agents S-oxybutynin and terodiline on cardiac K+ currents and action potentials. Br J Pharmacol. 2000;131:245–54.PubMed PubMedCentral CrossRef
    28.Gintant GA. Preclinical Torsades-de-Pointes screens: advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk. Pharmacol Ther. 2008;119:199–209.PubMed CrossRef
    29.Taubel J, Wong AH, Naseem A, Ferber G, Camm AJ. Shortening of the QT interval after food can be used to demonstrate assay sensitivity in thorough QT studies. J Clin Pharmacol. 2012;52:1558–65.PubMed CrossRef
    30.Holzgrefe HH, Cavero I, Buchanan LV, Gill MW, Durham SK. Application of a probabilistic method for the determination of drug-induced QT prolongation in telemetered cynomolgus monkeys: effects of moxifloxacin. J Pharmacol Toxicol Methods. 2007;55:227–37.PubMed CrossRef
    31.Taglialatela M, Castaldo P, Pannaccione A, Giorgio G, Annunziato L. Human Ether-a-gogo Related Gene (HERG) K+ channels as pharmacological targets: present and future implications. Biochem Pharmacol. 1998;55:1741–6.PubMed CrossRef
    32.Volders PGA, Sipido KR, Carmeliet E, Spatjens RLHMG, Wellens HJJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999;99:206–10.PubMed CrossRef
    33.Magyar J, Iost N, Körtvély Á, Bányász T, Virág L, Szigligeti P, et al. Effects of endothelin-1 on calcium and potassium currents in undiseased human ventricular myocytes. Eur J Physiol. 2000;441:144–9.CrossRef
    34.Szabó G, Szentandrássy N, Bíró T, Tóth BI, Czifra G, Magyar J, et al. Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Eur J Physiol. 2005;450:307–16.CrossRef
    35.Jonsson MKB, van der Heyden MAG, van Veen TAB. Deciphering hERG channels : molecular basis of the rapid component of the delayed rectifier potassium current. J Mol Cell Cardiol. 2012;53:369–74. Elsevier Ltd.PubMed CrossRef
    36.Sivagangabalan G, Nazzari H, Bignolais O, Maguy A, Naud P, Farid T, et al. Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts. PLoS One. 2014;9:e82179.PubMed PubMedCentral CrossRef
    37.Shah RR. Mechanistic basis of adverse drug reactions : the perils of inappropriate dose schedules. Expert Opin Drug Saf. 2005;4:103–28.PubMed CrossRef
    38.Rohatagi S, Carrothers TJ, Kuwabara-Wagg J, Khariton T. Is a thorough QTc study necessary? The role of modeling and simulation in evaluating the QTc prolongation potential of drugs. J Clin Pharmacol. 2009;49:1284–96.PubMed CrossRef
    39.Jonker DM, Kenna LA, Leishman D, Wallis R, Milligan PA, Jonsson EN. A pharmacokinetic-pharmacodynamic model for the quantitative prediction of dofetilide clinical QT prolongation from human ether-a-go-go-related gene current inhibition data. Clin Pharmacol Ther. 2005;77:572–82.PubMed CrossRef
    40.Grosjean P, Urien SS. Moxifloxacin versus placebo modeling of the QT interval. J Pharmacokinet Pharmacodyn. 2012;39:205–15.PubMed CrossRef
    41.Piotrovsky V. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS J. 2005;7:E609–24.PubMed PubMedCentral CrossRef
    42.Friberg LE, Isbister GK, Duffull SB. Pharmacokinetic-pharmacodynamic modelling of QT interval prolongation following citalopram overdoses. Br J Clin Pharmacol. 2006;61:177–90.PubMed PubMedCentral CrossRef
    43.Grosjean P, Urien S. Reevaluation of moxifloxacin pharmacokinetics and their direct effect on the QT interval. J Clin Pharmacol. 2012;52:329–38.PubMed CrossRef
  • 作者单位:V. F. S. Dubois (1)
    W. E. A. de Witte (1)
    S. A. G. Visser (2)
    M. Danhof (1)
    O. Della Pasqua (1) (3) (4)
    on behalf of the Cardiovascular Safety Project Team
    TI Pharma PKPD Platform

    1. Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
    2. Global DMPK, AstraZeneca R&D, Sodertalje, Sweden
    3. Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Uxbridge, UK
    4. Clinical Pharmacology & Therapeutics, University College London, London, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Background and Purpose The selection of the most suitable animal species and subsequent translation of the concentration-effect relationship to humans are critical steps for accurate assessment of the pro-arrhythmic risk of candidate molecules. The objective of this investigation was to assess quantitatively the differences in the QTc prolonging effects of moxifloxacin between cynomolgus monkeys, dogs and humans. The impact of interspecies differences is also illustrated for a new candidate molecule.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700