Extracellular Chaperones
详细信息    查看全文
  • 作者:Rebecca A. Dabbs (1)
    Amy R. Wyatt (1)
    Justin J. Yerbury (1)
    Heath Ecroyd (1)
    Mark R. Wilson (1)
  • 关键词:Clearance ; Extracellular chaperones ; Extracellular proteostasis ; Immune response ; Protein misfolding diseases ; Receptor ; mediated endocytosis
  • 刊名:Topics in Current Chemistry
  • 出版年:2013
  • 出版时间:2013
  • 年:2013
  • 卷:328
  • 期:1
  • 页码:269-272
  • 全文大小:396KB
  • 参考文献:1. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891-94
    2. Ker YC, Chen RH (1998) Stress-induced conformational changes and gelation of soy protein isolate suspensions. Lebenson Wiss Technol 31:107-13
    3. Bucciantini M et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507-10
    4. Buxbaum J, Gallo G (1999) Nonamyloidotic monoclonal immunoglobulin deposition disease. Light-chain, heavy-chain, and light- and heavy-chain deposition diseases. Hematol Oncol Clin North Am 13:1235-248
    5. Mullins RF et al (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835-46
    6. Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229-36
    7. Feng H et al (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:3503-512
    8. Gastpar R et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238-247
    9. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349-3355
    10. Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849-857
    11. Mambula SS et al (2007) Mechanisms for Hsp70 secretion: crossing membrane without a leader. Methods 43:168-75
    12. Merendino AM et al (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5:e9247
    13. Eustace BK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507-14
    14. Srivastava PK et al (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657-65
    15. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185-94
    16. Basu S, Srivastava PK (1999) Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189:797-02
    17. Maki RG et al (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52:1964-972
    18. Rivoltini L et al (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol 171:3467-474
    19. Srivastava PK, DeLeo AB, Old LJ (1986) Tumour rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83:3407-411
    20. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585-588
    21. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391-396
    22. Humphreys DT et al (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875-881
    23. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25:95-8
    24. Murphy BF et al (1988) SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest 81:1858-864
    25. Choi NH et al (1990) Sandwich ELISA for quantitative measurement of SP-40,40 in seminal plasma and serum. J Immunol Methods 131:159-63
    26. Carver JA et al (2003) Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function. IUBMB Life 55:661-68
    27. Poon S et al (2002) Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277:39532-9540
    28. Poon S et al (2000) Clusterin is an ATP-independent chaperone with a very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39:15953-5960
    29. Poon S et al (2002) Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513:259-66
    30. Wyatt AR, Wilson MR (2010) Identification of human plasma proteins as major clients for the extracellular chaperone clusterin. J Biol Chem 285:3532-539
    31. Wyatt AR, Yerbury JJ, Wilson MR (2009) Structural characterization of clusterin-client protein complexes. J Biol Chem 284:21920-1927
    32. Yerbury JJ et al (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with pre-fibrillar structures. FASEB J 21:2312-322
    33. Kumita JR et al (2007) The extracellular chaperone clusterin potentially inhibits amyloid formation by interacting with prefibrillar species. J Mol Biol 369:157-67
    34. Matsubara E, Frangione B, Ghiso J (1995) Characterization of apolipoprotein J-Alzheimer’s a-beta interaction. J Biol Chem 270:7563-567
    35. Oda T et al (1995) Clusterin (apoJ) alters the aggregation of amyloid beta peptide 1-2 and forms slowly sedimenting A-beta complexes that cause oxidative stress. Exp Neurol 136:22-1
    36. McHattie S, Edington N (1999) Clusterin prevents aggregation of neuropeptide 106-26 in vitro. Biochem Biophys Res Commun 259:336-40
    37. Hatters DM et al (2002) Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin. Eur J Biochem 269:2789-794
    38. Crabb JW et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682-4687
    39. French LE, Tschopp J, Schifferli JA (1992) Clusterin in renal tissue: preferential localization with the terminal complement complex and immunoglobulin deposits in glomeruli. Clin Exp Immunol 88:389-93
    40. Sasaki K et al (2002) Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies. Acta Neuropathol 104:225-30
    41. Freixes M et al (2004) Clusterin solubility and aggregation in Creutzfeldt-Jakob disease. Acta Neuropathol 108:295-01
    42. Zenkel M et al (2006) Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Invest Opthalmol Vis Sci 47:1982-990
    43. Mackness B et al (1997) Increased immunolocalization of paraoxonase, clusterin and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17:1233-238
    44. Witte DP et al (1993) Platelet activation releases megakaryocyte-synthesized apolipoprotein J, a highly abundant protein in a atheromatous lesions. Am J Pathol 143:763-73
    45. Ghiso J et al (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293:27-0
    46. Calero M et al (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50:305-15
    47. Rosenberg ME, Silkensen J (1995) Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27:633-45
    48. Strocchi P et al (2006) Clusterin up-regulation following sub-lethal oxidative stress and lipid peroxidation in human neuroblastoma cells. Neurobiol Aging 27:1588-594
    49. Ubrich C et al (2000) Laminar shear stress upregulates the complement-inhibitory protein clusterin. Circulation 101:352-55
    50. Loison F et al (2006) Up-regulation of the clusterin gene after proteotoxic stress: implications of HSF1-HSF2 heterocomplexes. Biochem J 395:223-31
    51. Michel D et al (1997) Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328:45-0
    52. Criswell T et al (2005) Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280:14212-4221
    53. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088-093
    54. Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094-099
    55. Binder RJ, Karimeddini D, Srivastava PK (2001) Adjuvanticity of alpha2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J Immunol 166:4968-972
    56. Sottrup-Jensen L (1989) Alpha-macroglobulins: structure shape and mechanism of proteinase complex formation. J Biol Chem 264:11539-1542
    57. Biringer RG et al (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5:144-53
    58. Narita M et al (1997) Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69:1904-911
    59. Mettenburg JM, Webb DJ, Gonias SL (2002) Distinct binding sites in the structure of alpha 2-macroglobulin mediate the interaction with beta-amyloid peptide and growth factors. J Biol Chem 277:13338-3345
    60. Motomiya Y et al (2003) Circulating levels of alpha2-macroglobulin-beta2-microglobulin complex in hemodialysis patients. Kidney Int 64:2244-252
    61. Adler V, Kryukov V (2007) Serum macroglobulin induces prion protein transition. Neurochem J 1:43-2
    62. French K, Yerbury JJ, Wilson MR (2008) Protease activation of alpha2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry 47:1176-185
    63. Fabrizi C et al (2001) Role of alpha2-macroglobulin in regulating amyloid -protein neurotoxicity: protective or detrimental factor? J Neurochem 78:406-12
    64. Adler V et al (2007) Alpha2-macroglobulin is a potential facilitator of prion protein transformation. Amyloid 14:1-0
    65. Binder RJ (2004) Purification of alpha2-macroglobulin and the construction of immunogenic alpha2-macroglobulin-peptide complexes for use as cancer vaccines. Methods 32:29-1
    66. Bowman BH, Kurosky A (1982) Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 12:189-61
    67. Baskies AM et al (1980) Serum glycoproteins in cancer patients: first reports of correlations with in vitro and in vivo parameters of cellular immunity. Cancer 45:3050-060
    68. Kurosky A et al (1980) Covalent structure of human haptoglobin: a serine protease homolog. Proc Natl Acad Sci USA 77:3388-392
    69. Pavlicek Z, Ettrich R (1999) Chaperone-like activity of human haptoglobin: similarity with a-crystallin. Collect Czech Chem Comm 64:717-25
    70. Kristiansen M et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198-01
    71. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphisms in humans. Clin Chem 42:1589-600
    72. Powers JM et al (1981) An immunoperoxidase study of senile cerebral amyloidosis with pathogenetic considerations. J Neuropathol Exp Neurol 40:592-12
    73. Kliffen M, de Jong PT, Luider TM (1995) Protein analysis of human maculae in relation to age-related maculopathy. Lab Invest 72:267-72
    74. Tomino Y et al (1981) Immunofluorescent studies on acute phase reactants in patients with various types of chronic glomerulonephritis. Tokai J Exp Clin Med 6:435-41
    75. Phillips NR, Havel RJ, Kane JP (1983) Sex-related differences in the concentrations of apolipoprotein E in human blood plasma and plasma lipoproteins. J Lipid Res 24:1525-531
    76. Landén M et al (1996) Apolipoprotein E in cerebrospinal fluid from patients with Alzheimer’s disease and other forms of dementia is reduced but without any correlation to the apoE4 isoform. Dementia 7:273-78
    77. Strittmatter WJ et al (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated tau: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:11183-1186
    78. Strittmatter WJ et al (1993) Binding of human apolipoprotein E to synthetic amyloid b peptide: isoform specific-effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90:8098-102
    79. Corder EH et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921-23
    80. Namba Y et al (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163-66
    81. Koistinaho M et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719-26
    82. Aquilina JA, Robinson CV (2003) Investigating interactions of the pentraxins serum amyloid P component and C-reactive protein by mass spectrometry. Biochem J 375:323-28
    83. Pepys MB et al (1978) Comparative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clin Exp Immunol 32:119-24
    84. Hutchinson WL et al (1994) The pentraxins, C-reactive protein and serum amyloid P component, are cleared and catabolized by hepatocytes in vivo. J Clin Invest 94:1390-396
    85. Botto M et al (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med 3:885-89
    86. Coria F et al (1988) Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab Invest 58:454-58
    87. Breathnach SM et al (1981) Amyloid P component is located on elastic fibre microfibrils in normal human tissue. Nature 293:652-54
    88. Kalaria RN et al (1991) Serum amyloid P in Alzheimer’s disease. Implications for dysfunction of the blood-brain barrier. Ann NY Acad Sci 640:145-48
    89. Yang GC et al (1992) Ultrastructural immunohistochemical localization of polyclonal IgG, C3, and amyloid P component on the congo red-negative amyloid-like fibrils of fibrillary glomerulopathy. Am J Pathol 141:409-10
    90. Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer’s disease and systemic amyloidosis. Proc Natl Acad Sci USA 92:4299-303
    91. Swaisgood HE (2003) Chemistry of the caseins. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry. Kluwer Academic/Plenum Publishers, New York
    92. Thorn DC, Ecroyd H, Carver JA (2009) The two-faced nature of milk casein proteins: amyloid fibril formation and chaperone-like activity. Aust J Dairy Technol 64:36-0
    93. Bhattacharyya J, Das KP (1999) Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein. J Biol Chem 274:15505-5509
    94. Matsudomi N et al (2004) Ability of alphas-casein to suppress the heat aggregation of ovotransferrin. J Agric Food Chem 52:4882-886
    95. Morgan PE et al (2005) Casein proteins as molecular chaperones. J Agric Food Chem 53:2670-683
    96. Zhang X et al (2005) Chaperone-like activity of beta-casein. Int J Biochem Cell Biol 37:1232-240
    97. Hassanisadi M et al (2008) Chemometric study of the aggregation of alcohol dehydrogenase and its suppression by beta-caseins: a mechanistic perspective. Anal Chim Acta 613:40-7
    98. Reid IM (1972) Corpora amylacea of the bovine mammary gland. Histochemical and electron microscopic evidence for their amyloid nature. J Comp Pathol 82:409-13
    99. Taniyama H et al (2000) Localized amyloidosis in canine mammary tumors. Vet Pathol 37:104-07
    100. Gruys E (2004) Protein folding pathology in domestic animals. J Zhejiang Univ Sci 5:1226-238
    101. Nickerson SC (1987) Amyloid fibril formation in the bovine mammary gland: an ultrastructural study. Cytobios 51:81-2
    102. Claudon C et al (1998) Proteic composition of corpora amylacea in the bovine mammary gland. Tissue Cell 30:589-95
    103. Niewold TA et al (1999) Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid 6:244-49
    104. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894-904
    105. Tang H et al (2009) Fibrinogen has chaperone-like activity. Biochem Biophys Res Commun 378:662-67
    106. Tang H et al (2009) Alpha(E)C, the C-terminal extension of fibrinogen, has chaperone-like activity. Biochemistry 48:3967-976
    107. Jenne DE, Tschopp J (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17:154-59
    108. de Silva HV et al (1990) Apolipoprotein J: structure and tissue distribution. Biochemistry 29:5380-389
    109. Hermo L, Barin K, Oko R (1994) Developmental expression of sulfated glycoprotein-2 in the epididymis of the rat. Anat Rec 240:327-44
    110. Jordan-Starck TC et al (1992) Apolipoprotein J: a membrane policeman? Curr Opin Lipidol 3:75-5
    111. Buttyan R et al (1989) Induction of the Trpm-2 gene in cells undergoing programmed death. Mol Cell Biol 9:3473-481
    112. Kapron JT et al (1997) Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci 6:2120-123
    113. Lupas A (1991) Predicting coiled-coils from protein sequences. Science 252:1162-164
    114. Bailey RW et al (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40:11828-1840
    115. Yang CR et al (2000) Nuclear clusterin/XIP8, an X-ray induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA 97:5907-912
    116. Santilli G, Aronow BJ, Sala A (2003) Essential requirement of apolipoprotein J (clusterin) signaling for Ikappa B expression and regulation of NF-kappaB activity. J Biol Chem 278:38214-8219
    117. Kang SW et al (2005) Clusterin interacts with SCLIP (SCG10-like protein) and promotes neurite outgrowth of PC12. Exp Cell Res 309:305-15
    118. Debure L et al (2003) Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration. J Cell Sci 116:3109-121
    119. Zhang HL et al (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909-15
    120. Nizard P et al (2007) Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 8:554-65
    121. Reddy KB et al (1996) Transforming growthfactor b (TGFb)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 35:6157-163
    122. Leskov KS et al (2003) Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 278:11590-1600
    123. Bucciantini M et al (2004) Pre-fibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374-1382
    124. Kounnas MZ et al (1995) Identification of Glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. Biochemistry 270:13070-3075
    125. Zlokovic BV et al (1996) Glycoprotein 330 megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid b at the blood–brain and blood–cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229-234
    126. Hammad SM et al (1997) Interaction of apolipoprotein J-amyloid B-peptide complex with low density lipoprotein receptor-related protein-2/megalin. J Biol Chem 272:18644-8649
    127. Calero M et al (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344:375-83
    128. Mahon MG et al (1999) Multiple involvement of clusterin in chicken ovarian follicle development. J Biol Chem 274:4036-044
    129. Bartl MM et al (2001) Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp Cell Res 271:130-41
    130. Lakins JN et al (2002) Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41:282-91
    131. Bajari TM et al (2003) A model for modulation of leptin activity by association with clusterin. FASEB J 17:1505-507
    132. Trougakos IP et al (2006) Clusterin/apolipoprotein J up-regulation after zinc exposure, replicative senescence or differentiation of human haematopoietic cells. Biogerontology 7:375-82
    133. Bailey RW et al (2002) Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/apoJ knock-out mice. Biol Reprod 66:1042
    134. McLaughlin L et al (2000) Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest 106:1105-113
    135. Wehrli P et al (2001) Inhibition of post-ischemic brain injury by clusterin overexpression. Nat Med 7:977-78
    136. DeMattos RB et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193-02
    137. Rosenberg M et al (2002) Apolipoprotein J/clusterin prevents progressive glomerulopathy of aging. Mol Cell Biol 22:1893-902
    138. Jensen PE, Sottrup-Jensen L (1986) Primary structure of human alpha-2 macroglobulin. Complete disulfide bridge assignment and localization of two interchain bridges in the dimeric and proteinase binding unit. J Biol Chem 261:15863-5869
    139. Imber MJ, Pizzo SV (1981) Clearance and binding of two electrophoretic "fast" forms of human alpha 2-macroglobulin. J Biol Chem 256:8134-139
    140. LaMarre J et al (1991) Cytokine binding and clearance properties of proteinase-activated alpha 2-macroglobulins. Lab Invest 65:3-4
    141. Feige JJ et al (1996) Alpha 2-macroglobulin: a binding protein for transforming growth factor-beta and various cytokines. Horm Res 45:227-32
    142. Crookston KP et al (1994) Classification of alpha 2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem 269:1533-540
    143. Araujo-Jorge TC, de Meirelles Mde N, Isaac L (1990) Trypanosoma cruzi: killing and enhanced uptake by resident peritoneal macrophages treated with alpha-2-macroglobulin. Parasitol Res 76:545-52
    144. van Dijk MC et al (1992) Role of the scavenger receptor in the uptake of methylamine-activated alpha 2-macroglobulin by rat liver. Biochem J 287(Pt 2):447-55
    145. Hughes SR et al (1998) Alpha2-macroglobulin associates with beta-amyloid and prevents fibril formation. Proc Natl Acad Sci USA 95:3275-280
    146. Yerbury JJ et al (2009) Alpha 2 macroglobulin and haptoglobin suppress amyloid formation by interacting with prefibrillar protein species. J Biol Chem 284:4246-254
    147. Du Y et al (1997) Alpha2-macroglobulin as a beta-amyloid peptide-binding plasma protein. J Neurochem 69:299-05
    148. Shibata M et al (2000) Clearance of Alzheimer’s amyloid-ss(1-0) peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest 106:1489-499
    149. Basu S et al (2001) CD91, a common receptor for heat shock proteins gp96, Hsp90, hsp70 and calreticulin. Immunity 14:303-13
    150. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein Gp96. Nat Immunol 1:151-55
    151. Binder RJ, Srivastava PK (2004) Essential role of Cd91 in re-presentation of Gp96-chaperoned peptides. Proc Natl Acad Sci USA 101:6128-133
    152. Arnold-Schild D et al (1999) Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757-760
    153. Henderson B et al (2010) Caught with their PAMPs down? The extracellular signaling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123-41
    154. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71-9
    155. Quintana FJ et al (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50:3712-720
    156. Binder RJ, Kumar SK, Srivastava PK (2002) Naturally formed or artificially reconstituted non-covalent alpha2-macroglobulin-peptide complexes elicit Cd91-dependent cellular immunity. Cancer Immun 2:16
    157. Dobryszycka W (1997) Biological functions of haptoglobin - new pieces to an old puzzle. Eur J Clin Chem Clin Biochem 35:647-54
    158. Giblett ER (1968) The haptoglobin system. Ser Haematol 1:3-0
    159. Gutteridge JM (1987) The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochimi Biophys Acta 917:219-23
    160. Edwards DH et al (1986) Haptoglobin-haemoglobin complex in human plasma inhibits endothelium dependent relaxation: evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc Res 20:549-56
    161. Lange V (1992) Haptoglobin polymorphisms - not only a genetic marker. Anthropol Anz 50:281-02
    162. Barclay R (1985) The role of iron in infection. Med Lab Sci 42:166-77
    163. Cid MC et al (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vascularitis. J Clin Invest 91:977-85
    164. Sobek O, Adam P, Seyfert OS, Kunzmann V, Schwetfeger N, Koch HC, Faulstich A (2003) Determinants of lumbar CSF protein concentration. J Neurol 250:371-72
    165. Yerbury JJ et al (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:10914-0925
    166. El Ghmati SM et al (1996) Identification of haptoglobin as an alternative ligand for CD11b/CD18. J Immunol 156:2542-552
    167. Wagner L et al (1996) Haptoglobin phenotyping by newly developed monoclonal antibodies: demonstration of haptoglobin uptake into peripheral blood neutrophils and monocytes. J Immunol 156:1989-996
    168. Lim SK et al (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870-877
    169. Cedazo-Minguez A, Cowburn RF (2001) Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle. J Cell Mol Med 5:254-66
    170. Zannis VI, Kardassis D, Zanni EE (1993) Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. Adv Hum Genet 21:145-19
    171. Li WH et al (1988) The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J Lipid Res 29:245-71
    172. Strittmatter WJ et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977-981
    173. LaDu MJ et al (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 269:23403-3406
    174. Pillot T et al (1997) Specific modulation of the fusogenic properties of the Alzheimer beta-amyloid peptide by apolipoprotein E isoforms. Eur J Biochem 243:650-59
    175. Wood SJ, Chan W, Wetzel R (1996) An ApoE-Abeta inhibition complex in Abeta fibril extension. Chem Biol 3:949-56
    176. Evans KC et al (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 92:763-67
    177. Castano EM et al (1995) Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. Biochem J 306(Pt 2):599-04
    178. Ma J et al (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372:92-4
    179. Bales KR et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17:263-64
    180. Bales KR et al (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96:15233-5238
    181. Holtzman DM et al (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21
    182. Mackic JB et al (1998) Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1-0. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734-43
    183. Hu J, LaDu MJ, Van Eldik LJ (1998) Apolipoprotein E attenuates beta-amyloid-induced astrocyte activation. J Neurochem 71:1626-634
    184. Emsley J et al (1994) Structure of pentameric human serum amyloid-P component. Nature 367:338-45
    185. Pepys MB et al (1994) Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous structure. Proc Natl Acad Sci USA 91:5602-606
    186. Wood SP et al (1988) A pentameric form of human serum amyloid P component. Crystallization, X-ray diffraction and neutron scattering studies. J Mol Biol 202:169-73
    187. Sorensen IJ et al (1995) Native human serum amyloid P component is a single pentamer. Scand J Immunol 41:263-67
    188. Hawkins PN et al (1994) Concentration of serum amyloid P component in the CSF as a possible marker of cerebral amyloid deposits in Alzheimer's disease. Biochem Biophys Res Commun 201:722-26
    189. Bickerstaff MCM et al (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5:694-97
    190. Breathnach SM et al (1989) Serum amyloid P component binds to cell nuclei in vitro and to in vivo deposits of extracellular chromatin in systemic lupus erythematosus. J Exp Med 170:1433-438
    191. Sorensen IJ et al (2000) Complexes of serum amyloid P component and DNA in serum from healthy individuals and systemic lupus erythematosus patients. J Clin Immunol 20:408-15
    192. de Haas CJC (1999) New insights into the role of serum amyloid P component, a novel lipopolysaccharide-binding protein. FEMS Immunol Med Microbiol 26:197-02
    193. Sorensen IJ et al (1996) Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase. Scand J Immunol 44:401-07
    194. Barbashov SF, Wang C, Nicholson-Weller A (1997) Serum amyloid P component forms a stable complex with human C5b6. J Immunol 158:3830-858
    195. de Beer FC et al (1981) Fibronectin and C4-binding protein are selectively bound by aggregated amyloid P component. J Exp Med 154:1134-139
    196. Swanson SJ, Christner RB, Mortensen RF (1992) Human serum amyloid P-component (SAP) selectively binds to immobilized or bound forms of C-reactive protein (CRP). Biochim Biophys Acta 1160:309-16
    197. Brown MR, Anderson BE (1993) Receptor-ligand interactions between serum amyloid P component and model soluble immune complexes. J Immunol 151:2087-095
    198. de Haas CJC et al (1998) A synthetic lipopolysaccharide (LPS)-binding peptide based on amino acids 27-9 of serum amyloid P component inhibits LPS-induced responses in human blood. J Immunol 161:3607-615
    199. Coker AR et al (2000) Molecular chaperone properties of serum amyloid P component. FEBS Lett 473:199-02
    200. Hamazaki H (1995) Ca(2+)-dependent binding of human serum amyloid P component to Alzheimer’s beta-amyloid peptide. J Biol Chem 270:10392-0394
    201. Pepys MB et al (1979) Binding of serum amyloid P component (SAP) by amyloid fibrils. Clin Exp Immunol 38:284-93
    202. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2-2
    203. Farrell HM Jr et al (2002) Molten globule structures in milk proteins: implications for potential new structure-function relationships. J Dairy Sci 85:459-71
    204. Kumosinski TF, Brown EM, Farrell HM Jr (1993) Three-dimensional molecular modeling of bovine caseins: a refined, energy-minimized kappa-casein structure. J Dairy Sci 76:2507-520
    205. Farrell HM Jr et al (2009) Review of the chemistry of alphaS2-casein and the generation of a homologous molecular model to explain its properties. J Dairy Sci 92:1338-353
    206. Koudelka T, Hoffmann P, Carver JA (2009) Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation. J Agric Food Chem 57:5956-964
    207. Khodarahmi R, Beyrami M, Soori H (2008) Appraisal of casein’s inhibitory effects on aggregation accompanying carbonic anhydrase refolding and heat-induced ovalbumin fibrillogenesis. Arch Biochem Biophys 477:67-6
    208. Thorn DC et al (2005) Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein. Biochemistry 44:17027-7036
    209. Thorn DC et al (2008) Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein. Biochemistry 47:3926-936
    210. Farrell HM Jr et al (2006) Casein micelle structure: what can be learned from milk synthesis and structural biology. Curr Opin Colloid In 11:135-47
    211. Farrell HM Jr et al (2003) Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259-73
    212. Ecroyd H et al (2008) Dissociation from the oligomeric state is the rate-limiting step in fibril formation by kappa-casein. J Biol Chem 283:9012-022
  • 作者单位:Rebecca A. Dabbs (1)
    Amy R. Wyatt (1)
    Justin J. Yerbury (1)
    Heath Ecroyd (1)
    Mark R. Wilson (1)

    1. School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
  • ISSN:1436-5049
文摘
The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer’s disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700