Integrated MALDI-MS imaging and LC–MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model
详细信息    查看全文
  • 作者:Miho Irie (1)
    Yoshinori Fujimura (2)
    Mayumi Yamato (2)
    Daisuke Miura (2)
    Hiroyuki Wariishi (2) (3) (4)
  • 关键词:MSI ; LC–MS ; Pathological analysis ; Metabolomic dynamics ; Spatiotemporal behavior ; Stroke
  • 刊名:Metabolomics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:10
  • 期:3
  • 页码:473-483
  • 全文大小:4,724 KB
  • 参考文献:1. Abe, K., Araki, T., & Kogure, K. (1988). Recovery from edema and of protein synthesis differs between the cortex and caudate following transient focal cerebral ischemia in rats. / Journal of Neurochemistry, / 51, 1470-476. CrossRef
    2. Amstalden van Hove, E. R., Smith, D. F., & Heeren, R. M. (2010). A concise review of mass spectrometry imaging. / Journal of Chromatography A, / 1217, 3946-954. CrossRef
    3. Bromont, C., Marie, C., & Bralet, J. (1989). Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats. / Stroke, / 20, 918-24. CrossRef
    4. Bylund-Fellenius, A. C., Ojamaa, K. M., Flaim, K. E., Li, J. B., Wassner, S. J., & Jefferson, L. S. (1984). Protein synthesis versus energy state in contracting muscles of perfused rat hindlimb. / American Journal of Physiology, / 246, E297-05.
    5. Caprioli, R. M., Farmer, T. B., & Gile, J. (1997). Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. / Analytical Chemistry, / 69, 4751-760. CrossRef
    6. Dun, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. / Trends in Analytical Chemistry, / 24, 285-94. CrossRef
    7. Green, A. R. (2008). Pharmacological approaches to acute ischaemic stroke: Reperfusion certainly, neuroprotection possibly. / British Journal of Pharmacology, / 153, S325-38. CrossRef
    8. Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. / Nature Reviews Cancer, / 4, 551-61. CrossRef
    9. Holmes, E., Wilson, I. D., & Nicholson, J. K. (2008). Metabolic phenotyping in health and disease. / Cell, / 134, 714-17. CrossRef
    10. Jung, J. Y., Lee, H. S., Kang, D. G., Kim, N. S., Cha, M. H., Bang, O. S., et al. (2011). 1H-NMR-based metabolomics study of cerebral infarction. / Stroke, / 42, 1282-288. CrossRef
    11. Kinross, J. M., Holmes, E., Darzi, A. W., & Nicholson, J. K. (2011). Metabolic phenotyping for monitoring surgical patients. / Lancet, / 377, 1817-819. CrossRef
    12. Kitagawa, K., Matsumoto, M., Yang, G., Mabuchi, T., Yagita, Y., Hori, M., et al. (1998). Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: Evaluation of the patency of the posterior communicating artery. / Journal of Cerebral Blood Flow and Metabolism, / 18, 570-79. CrossRef
    13. Lipton, P. (1999). Ischemic cell death in brain neurons. / Physiological Reviews, / 79, 1431-568.
    14. Major, H. J., Williams, R., Wilson, A. J., & Wilson, I. D. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. / Rapid Communications in Mass Spectrometry, / 20, 3295-302. CrossRef
    15. Martin, J. (2003). / Neuroanatomy: Text and Atlas. New York: McGraw-Hill Companies Inc.
    16. Matsumoto, K., Graf, R., Rosner, G., Taguchi, J., & Heiss, W. D. (1993). Elevation of neuroactive substances in the cortex of cats during prolonged focal ischemia. / Journal of Cerebral Blood Flow and Metabolism, / 13, 586-94. CrossRef
    17. Memezawa, H., Minamisawa, H., Smith, M. L., & Siesj?, B. K. (1992a). Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. / Experimental Brain Research, / 89, 67-8. CrossRef
    18. Memezawa, H., Smith, M. L., & Siesj?, B. K. (1992b). Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. / Stroke, / 23, 552-59. CrossRef
    19. Miura, D., Fujimura, Y., Tachibana, H., & Wariishi, H. (2010a). Highly sensitive matrix-assisted laser desorption ionization-mass spectrometry for high-throughput metabolic profiling. / Analytical Chemistry, / 82, 498-04. CrossRef
    20. Miura, D., Fujimura, Y., & Wariishi, H. (2012). In situ metabolomic mass spectrometry imaging: Recent advances and difficulties. / Journal of Proteomics, / 75, 5052-060. CrossRef
    21. Miura, D., Fujimura, Y., Yamato, M., Hyodo, F., Utsumi, H., Tachibana, H., et al. (2010b). Ultrahighly sensitive in situ metabolomic imaging for visualizing spatiotemporal metabolic behaviors. / Analytical Chemistry, / 82, 9789-796. CrossRef
    22. Neumar, R. W. (2000). Molecular mechanisms of ischemic neuronal injury. / Annals of Emergency Medicine, / 36, 483-06.
    23. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics- Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. / Xenobiotica, / 29, 1181-189. CrossRef
    24. Phillis, J. W., Smith-Barbour, M., & O’Regan, M. H. (1996). Changes in extracellular amino acid neurotransmitters and purines during and following ischemias of different durations in the rat cerebral cortex. / Neurochemistry International, / 29, 115-20. CrossRef
    25. Phillis, J. W., Smith-Barbour, M., O’Regan, M. H., & Perkins, L. M. (1994). Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion. / Neurochemical Research, / 19, 1125-130. CrossRef
    26. Pohjanen, E., Thysell, E., Jonsson, P., Eklund, C., Silfver, A., Carlsson, I. B., et al. (2007). A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. / Journal of Proteome Research, / 6, 2113-120. CrossRef
    27. Sarkar, S., & Das, N. (2006). Mannosylated liposomal flavonoid in combating age-related ischemia-reperfusion induced oxidative damage in rat brain. / Mechanisms of Ageing and Development, / 127, 391-97. CrossRef
    28. Sims, N. R., & Muyderman, H. (2010). Mitochondria, oxidative metabolism and cell death in stroke. / Biochimica et Biophysica Acta, / 1802, 80-1. CrossRef
    29. Stoeckli, M., Chaurand, P., Hallahan, D. E., & Caprioli, R. M. (2001). Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. / Nature Medicine, / 7, 493-96. CrossRef
    30. Tretter, L., & Adam-Vizi, V. (2000). Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. / Journal of Neuroscience, / 20, 8972-979.
    31. Vickerman, J. C. (2011). Molecular imaging and depth profiling by mass spectrometry—SIMS, MALDI or DESI? / Analyst, / 136, 2199-217. CrossRef
    32. Werner, E., Croixmarie, V., Umbdenstock, T., Ezan, E., Chaminade, P., Tabet, J. C., et al. (2008). Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. / Analytical Chemistry, / 80, 4918-932. CrossRef
    33. Yousuf, S., Atif, F., Ahmad, M., Hoda, N., Ishrat, T., Khan, B., et al. (2009). Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. / Brain Research, / 1250, 242-53. CrossRef
    34. Yukihira, D., Miura, D., Saito, K., Takahashi, K., & Wariishi, H. (2010). MALDI–MS-based high-throughput metabolite analysis for intracellular metabolic dynamics. / Analytical Chemistry, / 82, 4278-282. CrossRef
    35. Zhang, N., Komine-Kobayashi, M., Tanaka, R., Liu, M., Mizuno, Y., & Urabe, T. (2005). Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. / Stroke, / 36, 2220-225. CrossRef
  • 作者单位:Miho Irie (1)
    Yoshinori Fujimura (2)
    Mayumi Yamato (2)
    Daisuke Miura (2)
    Hiroyuki Wariishi (2) (3) (4)

    1. Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
    2. Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
    3. Bio-architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
    4. Faculty of Arts and Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
  • ISSN:1573-3890
文摘
Spatiotemporal information about biomolecules is indispensable for precise pathological analysis, but it remains largely unclear. Here we show a novel analytical platform combing mass spectrometry imaging (MSI) with its complementary technique, liquid chromatography–mass spectrometry (LC–MS), to elucidate more comprehensive metabolic behaviors, with spatiotemporal information, in tissues. Analysis of a rat transient middle cerebral artery occlusion (MCAO) brain tissue after ischemia–reperfusion was performed to characterize the detailed metabolomic response to pathological alterations. To compare the spatially resolved metabolic state between ischemic and contralateral hemispheres of the MCAO brain, coronally sliced tissues were subjected to MSI. We also measured the metabolites extracted from three different cerebral regions, including whole cortex (CTX), hippocampus (HI) and corpus striatum (CPu), by LC–MS. In the ischemic hemisphere, significant metabolic changes at the CTX and CPu were observed after reperfusion, while not at the HI. A region-specific metabolic behavior was observed in amino acid and nucleotide metabolism, as well as in the TCA cycle. Correlation between MSI and LC–MS data was relatively high in the CTX and CPu. Combination of both MS platforms visualized the diverse spatiotemporal metabolic dynamics during pathological progress. Thus, our proposed strategy will contribute to the understanding of the complex pathogenesis of ischemia–reperfusion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700