Formation of phenyl-C61-butyric acid methyl ester nanoscale aggregates after supercritical carbon dioxide annealing
详细信息    查看全文
  • 作者:Xiuxiu Zhao ; Danhui Wang ; Nana Yuan ; Yue Zheng ; Lin Li…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:52
  • 期:5
  • 页码:2484-2494
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
In this study, we successfully developed a novel method to create [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoscale aggregates using supercritical carbon dioxide (scCO2) annealing and fabricated bulk heterojunction (BHJ) solar cells with the nanoscale PCBM to improve device performance. PCBM forms nanoscale aggregates with a size of approximately 70 nm after scCO2 annealing at 11 MPa and 50 °C for 60 min. However, PCBM remains amorphous after thermal annealing (TA) at 150 °C for 5 min. The morphology, structure, and crystallinity of poly(3-hexylthiophene) (P3HT) in the scCO2-treated P3HT film are nearly the same as those in the TA-treated P3HT film. In the P3HT/PCBM blend, the formation of PCBM nanoscale aggregates by scCO2 treatment decreases the disturbance for P3HT crystallization and improves diffusion and regular packing of P3HT molecular chains. This increases the crystallinity of P3HT so that it becomes higher than that in the TA-treated blend film. The nanoscale aggregates of PCBM and the higher crystallinity of P3HT give the scCO2-treated P3HT/PCBM BHJ solar cells a maximum power conversion efficiency (PCE) of 2.74%, which is much higher than that of the as-cast device (PCE is 1.70%) and a little higher than the highest PCE (2.64%) of thermally annealed devices. These results indicate that scCO2 is an effective, mild, and environmental method to modulate the nanoscale aggregates of PCBM and to improve the PCE of BHJ solar cells. However, the size of the PCBM aggregates is a little larger than the most suitable size of the exciton diffusion length, leading to limited improvement of the PCE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700