Speaky for robots: the development of vocal interfaces for robotic applications
详细信息    查看全文
  • 作者:Emanuele Bastianelli ; Daniele Nardi ; Luigia Carlucci Aiello…
  • 关键词:Human robot interaction ; Natural language interfaces ; Spoken language understanding ; Knowledge representation
  • 刊名:Applied Intelligence
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:44
  • 期:1
  • 页码:43-66
  • 全文大小:6,989 KB
  • 参考文献:1.Asoh H, Vlassis NA, Motomura Y, Asano F, Hara I, Hayamizu S, Itou K, Kurita T, Matsui T, Bunschoten R, Kröse BJA (2001) Jijo-2: An office robot that communicates and learns. IEEE Intell Syst 16(5):46–55
    2.Baker CF, Fillmore CJ, Lowe JB (1998) The Berkeley framenet project. In: Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics. ACL, pp 86–90
    3.Bannat A, Blume J, Geiger JT, Rehrl T, Wallhoff F, Mayer C, Radig B, Sosnowski S, Kühnlenz K (2010) A multimodal human-robot-dialog applying emotional feedbacks. In: Proceedings of international conference of social robotics, pp 1–10
    4.Bastianelli E, Bloisi D, Capobianco R, Cossu F, Gemignani G, Iocchi L, Nardi D (2013) On-line semantic mapping. In: Proceeding of international conference on advanced robotics. IEEE, pp 1–6
    5.Bastianelli E, Bloisi D, Capobianco R, Gemignani G, Iocchi L, Nardi D (2013) Knowledge representation for robots through human-robot interaction. CoRR http://​arxiv.​org/​abs/​1307.​7351
    6.Bastianelli E, Castellucci G, Croce D, Basili R, Nardi D (2014) Effective and robust natural language understanding for human-robot interaction. In: Proceedings of 21st European conference on artificial intelligence. IOS Press, pp 57–62
    7.Bastianelli E, Castellucci G, Croce D, Basili R, Nardi D Natural language technologies for adaptive spoken human-robot interaction (2014). In preparation
    8.Bastianelli E, Castellucci G, Croce D, Iocchi L, Basili R, Nardi D (2014) Huric: a human robot interaction corpus. In: Chair NCC, Choukri K, Declerck T, Loftsson H, Maegaard B, Mariani J, Moreno A, Odijk J, Piperidis S (eds) Proceedings of the 9th international conference on language resources and evaluation (LREC’14), European Language Resources Association (ELRA), Reykjavik
    9.Bos J (2002) Compilation of unification grammars with compositional semantics to speech recognition packages. In: Proceedings of the 19th international conference on computational linguistics. ACL, pp 1–7
    10.Bos J, Oka T (2007) A spoken language interface with a mobile robot. Artif Life Robot 11(1):42–47CrossRef
    11.Cocorobo: Sharp. http://​www.​sharp.​co.​jp/​cocorobo/​
    12.Connell JH (2014) Extensible grounding of speech for robot instruction. In: Markowitz J (ed) Robots that talk and listen: technology and social impact. Walter De Gruyter Inc
    13.Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2–3):85–96CrossRef
    14.Fasola J, Mataric M (2013) Using semantic fields to model dynamic spatial relations in a robot architecture for natural language instruction of service robots. In: Proceedings of international conference on intelligent robots and systems, pp 143–150
    15.Fillmore CJ (1985) Frames and the semantics of understanding. Quaderni di Semantica 6(2):222–254
    16.Foster ME, Giuliani M, Isard A, Matheson C, Oberlander J, Knoll A (2009) Evaluating description and reference strategies in a cooperative human-robot dialogue system. In: Proceedings of 21st international jont conference on artifical intelligence. Morgan Kaufmann Publishers Inc, pp 1818–1823
    17.Harnad S (1990) The symbol grounding problem. Physica D: Nonlinear Phenomena 42(1-3):335–346CrossRef
    18.Kamp H (1981) A theory of truth and semantic representation. In: Groenendijk JAG, Janssen TMV, Stokhof MBJ (eds) Formal methods in the study of language, vol 1. Mathematisch Centrum, pp 277–322
    19.Kollar T, Tellex S, Roy D, Roy N (2010) Toward understanding natural language directions. In: Proceedings of the 5th international conference on human-robot interaction. ACM/IEEE, IEEE Press, pp 259–266
    20.Kollar T, Tellex S, Roy N (2010) A discriminative model for understanding natural language route directions. In: Proceedings of association for the advancement of artificial intelligence fall symposium: dialog with robots’10
    21.Kruijff G, Zender H, Jensfelt P, Christensen H (2007) Situated dialogue and spatial organization: What, where... and why, vol 4, pp 125–138. Special issue on human and robot interactive communication
    22.Kruijff GJM (2001) A categorial-modal logical architecture of informativity: dependency grammar logic & information structure. Ph.D. thesis, Faculty of Mathematics and Physics. Charles University, Czech Republic
    23.de Mori R (2007). In: Furui S, Kawahara T (eds) Spoken language understanding: a survey. IEEE, pp 365–376
    24.Nao: Aldebaran. http://​www.​aldebaran-robotics.​com/​
    25.Nardi D, Lima P (2012) RoboCup: the robot soccer world cup. In: Lima P, Cortesao R (eds) Proceedings of the international conference on intelligent robots and systems. Workshop on robot competitions: benchmarking, technology transfer and education. IEEE/RSJ, IEEE
    26.Nishimori M, Saitoh T, Konishi R (2007) Voice controlled intelligent wheelchair. In: Proceedings of society of instrument and control engineers annual conference. IEEE, pp 336–340
    27.Nisimura R, Uchida T, Lee A, Saruwatari H, Shikano K, Matsumoto Y (2002) ASKA: Receptionist robot with speech dialogue system. IEEE/RSJ, pp 1314–1319
    28.Nüchter A, Hertzberg J (2008) Towards semantic maps for mobile robots. Robot Auton Syst 56(11):915–926CrossRef
    29.Palmer M, Gildea D, Xue N (2010) Semantic role labeling. Synthesis lectures on human language technologies. Morgan & Claypool Publishers
    30.Popović M, Ney H (2007) Word error rates: decomposition over pos classes and applications for error analysis. In: Proceedings of the 2nd workshop on statistical machine translation. ACL, pp 48–55
    31.Q.bo: The corpora robot company. http://​thecorpora.​com
    32.Rybski P, Yoon K, Stolarz J, Veloso M (2007) Interactive robot task training through dialog and demonstration. In: Proceedings of international conference on human-robot interaction. ACM/IEEE, ACM, pp 49–56
    33.Sallé D, Traonmilin M, Canou J, Dupourqué V (2007) Using microsoft robotics studio for the design of generic robotics controllers: the robubox software. In: Proceedings of international conference on robotics and automation. Workshop software development and integration in robotics. IEEE
    34.Stiefelhagen R, Ekenel H, Fugen C, Gieselmann P, Holzapfel H, Kraft F, Nickel K, Voit M, Waibel A (2007) Enabling multimodal human–robot interaction for the Karlsruhe humanoid robot. IEEE Trans Robot 23(5):840–851CrossRef
    35.Tellex S, Kollar T, Dickerson S, Walter MR, Banerjee AG, Teller S, Roy N (2011) Approaching the symbol grounding problem with probabilistic graphical models. AI Mag 32(4):64–76
    36.Tellex S, Kollar T, Dickerson S, Walter MR, Banerjee AG, Teller SJ, Roy N (2011) Understanding natural language commands for robotic navigation and mobile manipulation. In: Proceedings of association for the advancement of artificial intelligence
    37.Theobalt C, Bos J, Chapman T, Espinosa-Romero A, Fraser M, Hayes G, Klein E, Oka T, Reeve R (2002) Talking to godot: dialogue with a mobile robot. In: Proceedings of international conference on intelligent robots and systems. IEEE/RSJ
    38.Thomas BJ, Jenkins OC (2012) Roboframenet: verb-centric semantics for actions in robot middleware. In: Proceedings of international conference on robotics and automation, pp 4750–4755
    39.Thrun S, Beetz M, Bennewitz M, Burgard W, Cremers A, Dellaert F, Fox D, Haehnel D, Rosenberg C, Roy N, Schulte J, Schulz D (2000) Probabilistic algorithms and the interactive museum tour-guide robot Minerva. J Robot Res 19(11)
    40.Topp EA (2008) Human-robot interaction and mapping with a service robot: human augmented mapping. Ph.D. thesis, Royal Institute of Technology, School of Computer Science and Communication
    41.Warwick K, Shah H (2013) Good machine performance in turing’s imitation game. IEEE Trans Comput Intell AI Games 6(3):289–299CrossRef
    42.Zuo X, Iwahashi N, Taguchi R, Funakoshi K, Nakano M, Matsuda S, Sugiura K, Oka N (2010) Detecting robot-directed speech by situated understanding in object manipulation tasks. In: Avizzano CA, Ruffaldi E (eds) Proceedings of the international symposium of robots and human interactive communication. IEEE, pp 608–613
  • 作者单位:Emanuele Bastianelli (1)
    Daniele Nardi (1)
    Luigia Carlucci Aiello (1)
    Fabrizio Giacomelli (2)
    Nicolamaria Manes (2)

    1. Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
    2. Mediavoice S.r.l., Rome, Italy
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Mechanical Engineering
    Manufacturing, Machines and Tools
  • 出版者:Springer Netherlands
  • ISSN:1573-7497
文摘
The currently available speech technologies on mobile devices achieve effective performance in terms of both reliability and the language they are able to capture. The availability of performant speech recognition engines may also support the deployment of vocal interfaces in consumer robots. However, the design and implementation of such interfaces still requires significant work. The language processing chain and the domain knowledge must be built for the specific features of the robotic platform, the deployment environment and the tasks to be performed. Hence, such interfaces are currently built in a completely ad hoc way. In this paper, we present a design methodology together with a support tool aiming to streamline and improve the implementation of dedicated vocal interfaces for robots. This work was developed within an experimental project called Speaky for Robots. We extend the existing vocal interface development framework to target robotic applications. The proposed solution is built using a bottom-up approach by refining the language processing chain through the development of vocal interfaces for different robotic platforms and domains. The proposed approach is validated both in experiments involving several research prototypes and in tests involving end-users. Keywords Human robot interaction Natural language interfaces Spoken language understanding Knowledge representation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700