Potential of Mesenchymal Stem Cells by Adenovirus-Mediated Erythropoietin Gene Therapy Approaches for Bone Defect
详细信息    查看全文
  • 作者:Chen Li (1)
    Jian Ding (2)
    Liming Jiang (1)
    Ce Shi (1)
    Shilei Ni (1)
    Han Jin (1)
    Daowei Li (1)
    Hongchen Sun (1)
  • 关键词:Erythropoietin ; Bone regeneration ; Osteoblast ; BMSCs
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:70
  • 期:2
  • 页码:1199-1204
  • 全文大小:1,753 KB
  • 参考文献:1. Beckman, D. L., Lin, L. L., Quinones, M. E., & Longmore, G. D. (1999). Activation of the erythropoietin receptor is not required for internalization of bound erythropoietin. / Blood, / 94, 2667鈥?675.
    2. Bi, B., Guo, J., Marlier, A., et al. (2008). Erythropoietin expands a stromal cell population that can mediate renoprotection. / American Journal of Physiology-Renal Physiology, / 295(4), 1017鈥?022. CrossRef
    3. Boyce, B. F., & Xing, L. (2008). Functions of RANKL/RANK/OPG in bone modeling and remodeling. / Archives of Biochemistry and Biophysics, / 473, 139鈥?46. CrossRef
    4. Galeano, M., Altavilla, D., Cucinotta, D., et al. (2004). Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. / Diabetes, / 53(9), 2509鈥?517. CrossRef
    5. Hayden, J. M., Mohan, S., & Baylink, D. J. (1995). The insulin-like growth factor system and the coupling of formation to resorption. / Bone, / 17, 93S鈥?8S. CrossRef
    6. Holstein, J. H., Menger, M. D., Scheuer, C., Meier, C., Culemann, U., Wirbel, R. J., et al. (2007). Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing. / Life Sciences, / 80, 893鈥?00. CrossRef
    7. Holstein, J. H., Orth, M., Scheuer, C., Tami, A., & Becker, S. C. (2011). Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. / Bone, / 49, 1037鈥?045. CrossRef
    8. Isama, K., & Tsuchiya, T. (2003). Enhancing effect of poly(l -lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells. / Biomaterials, / 24, 3303. CrossRef
    9. Lopez, T. V., Lappin, T. R. J., Maxwell, P., et al. (2011). Autocrine/paracrine erythropoietin signalling promotes JAK/STAT-dependent proliferation of human cervical cancer cells. / International Journal of Cancer, / 129(11), 2566鈥?576. CrossRef
    10. Martin, T. J., & Sims, N. A. (2005). Osteoclast-derived activity in the coupling of bone formation to resorption. / Trends in Molecular Medicine, / 11, 76鈥?1. CrossRef
    11. Mihmanli, A., Dolanmaz, D., Avunduk, M. C., & Erdemli, E. (2009). Effects of recombinant human erythropoietin on mandibular distraction osteogenesis. / Journal of Oral and Maxillofacial Surgery, / 67, 2337鈥?343. CrossRef
    12. Nakashima, K., Zhou, X., Kunkel, G., et al. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. / Cell, / 108(1), 17鈥?9. CrossRef
    13. Ornitz, D. M., & Marie, P. J. (2002). FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. / Genes & Development, / 16, 1446鈥?465. CrossRef
    14. Prall, W. C., Haasters, F., Heggebo, J., Polzer, H., Schwarz, C., Gassner, C., et al. (2013). Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation. / Biochemical and Biophysical Research Communications, / 440, 617鈥?22. CrossRef
    15. Shiozawa, Y., Jung, Y., Ziegler, A. M., Pedersen, E. A., Wang, J., Wang, Z., et al. (2010). Erythropoietin couples hematopoiesis with bone formation. / PLoS One, / 5, e10853. CrossRef
    16. Tanaka, H., Shirakawa, T., Zhang, Z., et al. (2005). A replication-selective adenoviral vector for head and neck cancers. / Archives of Otolaryngology-Head and Neck Surgery, / 131(7), 630鈥?34. CrossRef
    17. Vorburger, S. A., & Hunt, K. K. (2002). Adenoviral gene therapy. / The Oncologist, / 7(1), 46鈥?9. CrossRef
    18. Yoshida, C. A., Komori, H. K., Maruyama, Z., Miyazaki, T., Kawasaki, K., et al. (2012). SP7 inhibits osteoblast differentiation at a late stage in mice. / PLoS One, / 7, e32364. CrossRef
  • 作者单位:Chen Li (1)
    Jian Ding (2)
    Liming Jiang (1)
    Ce Shi (1)
    Shilei Ni (1)
    Han Jin (1)
    Daowei Li (1)
    Hongchen Sun (1)

    1. Department of Oral Pathology, College and Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
    2. FAW General Hospital, Fourth Hospital of Jilin University, Changchun, 130021, Jilin, China
  • ISSN:1559-0283
文摘
Regeneration of large bone defects is a common clinical problem. Recent studies have shown that mesenchymal stem cells (MSCs) have emerged as a promising alternative to traditional surgical techniques. However, it is still a key question how to enhance the osteogenic potential of MSCs for possible clinical trials. The aim of the present study was to investigate the effect of adenovirus-mediated erythropoietin (Ad-EPO) transfer on BMSCs, we performed extensive in vitro/in vivo assays in this study. Flow cytometry analysis and the result of MTT showed that EPO could promote BMSCs proliferation. QPCR data demonstrated that EPO increased expressions of Runx2, Sp7, and Col1 in osteoblast at various time points and also increased alkaline phosphatase activity and the calcium deposition. These results indicate that EPO can increase the differentiation of osteoblast. Importantly, in vivo assays clearly demonstrate that EPO can efficiently induce new bone formation in the bone defect model. Our results strongly suggest that EPO can affect osteoblast differentiation and play important roles in bone regeneration leading to an increase in bone formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700