Fine mapping of the temperature-sensitive semi-dwarf (Tssd) locus regulating the internode length in peach (Prunus persica)
详细信息    查看全文
  • 作者:Zhenhua Lu ; Liang Niu ; David Chagné ; Guochao Cui ; Lei Pan…
  • 关键词:Temperature ; sensitive type ; Dwarfing ; Specific length amplified fragment ; Genotyping by sequencing ; Internode length
  • 刊名:Molecular Breeding
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 全文大小:999 KB
  • 参考文献:Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–179CrossRef PubMed
    Adami M, Franceschi PD, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Rep 31:1166–1175CrossRef
    Aranzana MJ, Illa E, Howad W, Arús P (2012) A first insight into peach [Prunus persica (L.)Batsch] SNP variability. Tree Genet Genomes 8:1359–1369CrossRef
    Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breed 31:429–440CrossRef
    Bassi D, Dima A, Scorza R (1994) Tree structure and pruning response of six peach growth forms. J Am Soc Hortic Sci 119(3):378–382
    Carvalho SMP, Heuvelink E, Cascais R, Kooten OV (2002) Effect of day and night temperature on internode and stem length in chrysanthemum: is everything explained by DIF? Ann Bot 90:111–118PubMedCentral CrossRef PubMed
    Chagné D (2015) Application of the high-resolution melting technique for gene mapping and SNP detection in plants. Plant genotyping methods in molecular biology, pp 151–159
    Chalmers DJ, Mitchell PD, Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning. J Am Soc Hortic Sci 106:307–312
    Cui F, Li J, Ding AM, Zhao CK, Wang L, Wang XQ, Li SS, BaoYG Li XF, Feng DS, Kong LR, Wang HG (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536CrossRef PubMed
    Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630CrossRef PubMed
    Davies RT, Goetz DH, Lasswell JE, Anderson MN, Bartel B (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11:365–376PubMedCentral CrossRef PubMed
    Dirlewanger E, Quero-Garcia J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292PubMedCentral CrossRef PubMed
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
    Drummond RSM, Janssen BJ, Luo ZW, Oplaat C, Ledger SE, Wohlers MW, Snowden KC (2015) Environmental control of branching in petunia. Plant Physiol 168:735–751PubMedCentral CrossRef PubMed
    Duval H, Hoerter M, Polidori J, Confolent C, Masse M, Moretti A, Ghelder CV, Esmenjaud D (2014) High-resolution mapping of the RMia gene for resistance to root-knot nematodes in peach. Tree Genet Genomes 10:297–306CrossRef
    Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRef
    Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I, Vizzotto G, Morgante M (2013) Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J 76(2):175–187PubMedCentral PubMed
    Foster TM, Jean-Marc Celton, Chag D, Tustin DS, Gardiner SE (2015) Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic Res. doi:10.​1038/​hortres.​2015.​1 PubMedCentral PubMed
    Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye SQ, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108(50):20231–20235PubMedCentral CrossRef PubMed
    Gallavotti A (2013) The role of auxin in shaping shoot architecture. J Exp Bot 63(9):2593–2608CrossRef
    Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Amer Soc Hort Sci 130(1):24–33
    Gradziel TM, Beres W (1993) Semi dwarf growth habit in clingstone peach with desirable tree and fruit qualities. Horscience 28:1045–1047
    Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202PubMedCentral CrossRef PubMed
    Grossman YL, DeJong TM (1998) Training and pruning system effects on vegetative growth potential, light interception, and cropping efficiency in peach trees. J Am Soc Hortic Sci 123:1058–1064
    Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forest. An architectural analysis. Springer, New York, pp 441CrossRef
    Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910PubMedCentral CrossRef PubMed
    Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus·domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208CrossRef
    Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19(5):408–413CrossRef PubMed
    Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967CrossRef PubMed
    Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Gene Dev 26:785–790PubMedCentral CrossRef PubMed
    Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499CrossRef PubMed
    Mateo-Bonmatí E, Casanova-Sáez R, Candela H, Micol JL (2014) Rapid identification of angulata leaf mutations using next-generation sequencing. Planta 240:1113–1122CrossRef PubMed
    Monet R, Salesses G (1975) Un nouveau mutant de nanisme chez le pêcher. Ann Amelior Plantes 25:353–359
    Muttoni G, Foerster JM, Johnson JM, Haase NJ, Beissinger TM, Stelpflug S C, Sekhon RS, Kaeppler SM, de Leon N (2013) Phenotypic and genetic dissection of maize internode length. Plant and animal genome XXI conference, pp 11–16
    Nozue K, Harmer SL, Maloof JN (2011) Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PIF5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol 156:357–372PubMedCentral CrossRef PubMed
    Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt ER (2014) The columnar mutation (“Co gene”) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol Breed 33:863–880CrossRef
    Petersen R, Krost C (2013) Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica). Planta 238:1–22CrossRef PubMed
    Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190(2):279–288CrossRef
    Pirona R, Eduardo I, Pacheco I, Linge CDS, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166PubMedCentral CrossRef PubMed
    Quarta R, Scortichini M (1985) Morphological characters and yielding efficiency of semi-dwarf peach selection. Acta Hortic 173:63–68CrossRef
    Scaglione D, Acquadro A, Portis E, Tirone M, Knapp SJ, Lanteri S (2012) RAD tag sequencing as a source of SNP markers in Cynaracardunculus L. BMC Genom 13:3CrossRef
    Scorza R, Glenn DM, Miller S, Tworkoski T, Okie WR (2006) Developing peach cultivars with novel tree growth habits. Acta Hortic 713:61–64CrossRef
    Segura V, Denancé C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171CrossRef PubMed
    Segura V, Durel CE, Costes E (2009) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet Genomes 5:165–179CrossRef
    Shen ZJ, Confolent C, Lambert P, Jean-Luc Poëssel, Quilot-Turion B, Yu ML, Ma RJ, Pascal T (2013) Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435–1446CrossRef
    Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, New York, pp 124–147CrossRef
    Sun JQ, Qi LL, Li YA, Chu JF, Li CY (2012) PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet. doi:10.​1371/​journal.​pgen.​1002594
    Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, Xu CH, Song J, Huang L, Wang CM, Shi JJ, Wang R, Zheng XH, Lu CY, Wang XW, Zheng HK (2013) SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE. doi:10.​1371/​journal.​pone.​0058700
    Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRef PubMed
    The International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan PF, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRef
    Van Ooijen JW, Voorrips RE (2001) JionMap version 3.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands
    Wang YH, Li JY (2008) Molecular Basis of Plant Architecture. Annu Rev Plant Biol 59:253–279CrossRef PubMed
    Wang ZQ, Niu L, Liu SE, Song YH, Zong XP (2004) ‘SD9238’ a new semi-dwarf germplasm of nectarine. J Fruit Sci 21:503–504 (in Chinese)
    Weibel A, Johnson RS, DeJong TM (2003) Comparative vegetative growth responses of two peach cultivars grown on size-controlling versus standard rootstocks. J Am Soc Hortic Sci 128(4):463–471
    Williamson JG, Coston DC (1990) Planting method and irrigation rate influence vegetative and reproductive growth of peach planted at high density. J Am Soc Hortic Sci 115(2):207–212
    Wolters PJ, Baldi P, Velasco R, Si Ammour A, Schouten HJ (2013) Co gene MdCo31 of the ‘Wijcik’ mutant of Malus x domestica Borkh and plants with controlled tree architecture genetically transformed by introduction of this gene. Patent
    Yu B, Lin Z, Li H, Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898CrossRef PubMed
    Zhang YX, Wang LH, Xin HG, Li DH, Ma CX, Ding X, Hong WG, Zhang XR (2013) Construction of a high density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141PubMedCentral CrossRef PubMed
  • 作者单位:Zhenhua Lu (1)
    Liang Niu (1)
    David Chagné (2)
    Guochao Cui (1)
    Lei Pan (1)
    Toshi Foster (2)
    Ruiping Zhang (1)
    Wenfang Zeng (1)
    Zhiqiang Wang (1)

    1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou, 450009, China
    2. The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9788
文摘
As a key component of tree architecture, plant height is an important agronomic trait in fruit trees. Reducing tree height is beneficial for increasing planting density, allowing higher yields, lowering costs and increasing the orchard’s lifespan. However, the genetic and molecular factors that regulate peach height are unknown. Here, we report a semi-dwarf peach mutant, which exhibits extremely shortened internodes at temperature below 30 °C. Genetic analysis indicated that this trait was controlled by a single dominant gene that we have named as temperature-sensitive semi-dwarf (Tssd). To map the Tssd locus, two DNA pools, each consisting of 50 mutant or wild-type siblings, were subjected to specific length amplified fragment sequencing. SLAF analysis followed by marker validation using Sanger sequencing and high-resolution melting genotyping located the Tssd gene in a region spanning approximately 750 kb between 2.35 and 3.10 Mb in scaffold 3 based on the reference peach genome sequence of ‘Lovell.’ Further SNPs were developed for fine mapping the locus, which spans an interval of 500 Kb and contains 69 predicted protein-coding gene models. The SNP markers flanking this interval can be applied in molecular identification of Tssd individuals. The result will provide information on how temperature regulates internode length in temperate fruit trees. Keywords Temperature-sensitive type Dwarfing Specific length amplified fragment Genotyping by sequencing Internode length

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700