A DNA-based diagnostic for differentiating among New Zealand endemic Podocarpus
详细信息    查看全文
  • 作者:Christina W. Marshall ; David Chagné ; Oliver Deusch…
  • 关键词:Podocarpus ; DNA markers ; High ; resolution melting ; Tōtara ; Hall’s tōtara ; Interspecific variation
  • 刊名:Tree Genetics & Genomes
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:11
  • 期:4
  • 全文大小:590 KB
  • 参考文献:Abdillahi HS, Stafford GI, Finnie JF, Staden JV (2010) Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo. South African J Bot 76:1–24CrossRef
    Allan HH (1961) Flora of New Zealand: Vol. I. Indigenous tracheophyta: psilopsida, lycopsida, filicopsida, gymnospermae, dicotyledons. Government Printer, Wellington, p 1085
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentral PubMed CrossRef
    Arif I, Bakir M, Khan H, Al Farhan A, Homaidan A, Bahkali AH, Sadoon MA et al (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11(5):2079–2096. doi:10.​3390/​ijms11052079 PubMedCentral PubMed CrossRef
    Baldwin S, Roopashree R, Thomson S, Pither-Joyce M, Wright K, Crowhurst R, Fiers M, Chen L et al (2012) Toolkit For Bulk PCR-Based Marker Design From Next-Generation Sequence Data: Application For Development Of A Framework Linkage Map In Bulb Onion (Allium cepa L.). BMC Genomics 13(1):637PubMedCentral PubMed CrossRef
    Bannister P, Neuner G (2001) Frost resistance and the distribution of conifers. In: Bigras F, Colombo S (eds) Conifer Cold Hardiness, vol 1. Tree Physiology. Springer Netherlands, pp 3-21. doi:10.​1007/​978-94-015-9650-3_​1
    Bergin DO (2000) Current knowledge relevant to management of Podocarpus totara for timber. NZ J Bot 38:343–359CrossRef
    Bergin DO (2003) Tōtara: Establishment, growth and management. Publication 115. New Zealand Indigenous Tree Bulletin No.1. New Zealand Forest Research Institute Ltd, Rotorua
    Bergin, DO, Cole C (2010) Comparisons between open-ground and container-raised indigenous shrubs in nursery and field trials. In: Barton I, Gadgil R, Bergin D (eds) Managing native trees. Towards a national strategy. Proceedings of the Tane’s Tree Trust 10th Anniversary Conference and Workshop, University of Waikato 18-20 November 2009. 64-74
    Bergin DO, Gea L (2007) (revised): Native trees – planting and early management for wood production. New Zealand Indigenous Tree Bulletin No. 3. New Zealand Forest Research Institute. 44p
    Bergin DO, Kimberley MO, Low CB (2008) Provenance variation in Podocarpus totara (D. Don): Growth, tree form and wood density on a coastal site in the north of the natural range. New Zealand Forest Econ Manag 255(5):1367–1378CrossRef
    Bryant D (2006) Radiation and network breaking in Polynesian linguistics. In: Forster P, Renfrew C (eds) Phylogenetics and the prehistory of languages. McDonald Institute for Archaeological Research, Cambridge, pp 111–118
    Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR et al (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92(5):353–358PubMed CrossRef
    Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Biol 11(1):485
    Dang XD, Kelleher CT, Howard-Williams E, Meade CV (2012) Rapid identification of chloroplast haplotypes using high resolution melting analysis. Mole Ecol Res. doi:10.​1111/​j.​1755-0998.​2012.​03164.​x
    Farjon A (2010) A handbook of the world's conifers vol 1. Koninklijke Brill NV, The NetherlandsCrossRef
    Ganopoulos I, Aravanopoulos F, Madesis P, Pasentsis K, Bosmali I, Ouzounis C, Tsaftaris A (2013) Taxonomic identification of mediterranean pines and their hybrids based on the high resolution melting (HRM) and trnL approaches: from cytoplasmic inheritance to timber tracing. PLoS ONE 8(4). doi:10.​1371/​journal.​pone.​0060945
    Gardner RO (1990) Totara and Hall's totara. Auckland Bot Soc 45(1):27–28
    Goecks J, Nekrutenko A, Taylor J, Team TG (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86PubMedCentral PubMed CrossRef
    Grant L, Skinner D (2007) Ihenga: te haerenga hou : the evolution of Māori carving in the 20th century. Reed, Auckland
    Hinds HV, Reid JS (1957) Forest trees and timber of New Zealand. New Zealand Forest Service Bulletin 12, Wellington, New Zealand
    Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mole Biol Evol 23(2):256–267
    Jaiswal R, Beuria TK, Mohan R, Mahajan SK, Panda (2007) Totarol inhibits bacterial cytokinesis by perturbing the assembly dynamics ofFtsZ. Biogeosciences 46(14):4211–4220
    Knopf P, Schulz C, Little DP, Stützel T, Stevenson DW (2012) Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28(3):271–299CrossRef
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol l10(3):R25CrossRef
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.​1093/​bioinformatics/​btp352 PubMedCentral PubMed CrossRef
    Lockhart PJ, McLenachan PA, Havell D, Glenny D, Huson D, Jensen U (2001) Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decomposition. Ann Missouri Bot Gard 88:458–477CrossRef
    Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9(1):34PubMedCentral PubMed CrossRef
    Matsui T, Wilson JB, West CJ (2004) Can Podocarpus totara and P. cunninghamii be distinguished by bark thickness?: A study on the southern coast of Southland/Otago, New Zealand. New Zealand J Bot 42:313–320CrossRef
    Maughan P, Smith S, Fairbanks D, Jellen E (2011) Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Genome J 4(1):92. doi:10.​3835/​plantgenome2010.​12.​0027 CrossRef
    Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Nat Acad Sci 108(30):12348–12353PubMedCentral PubMed CrossRef
    Mitra S, Gilbert JA, Field D, Huson DH (2010) Comparison of multiple metagenomes using phylogenetic networks based on ecological indices. ISME J 4(10):1236–1242PubMed CrossRef
    Murray BG, Friesen N, Heslop-Harrison JS (2002) Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann Bot 89(4):483–489PubMedCentral PubMed CrossRef
    Naresh V, Yamini KN, Rajendrakumar P, Kumar VD (2009) EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica 170(3):347–353. doi:10.​1007/​s10681-009-9995-3 CrossRef
    Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mole Ecol 13(5):1143–1155. doi:10.​1111/​j.​1365-294X.​2004.​02141.​x CrossRef
    Ogden J, Stewart GH (1995) Community dynamics of the New Zealand conifers. In: Hill RS (ed) Enright NJ. Melbourne University Press, Melbourne, pp 81–119
    Riley M, Enting B (1994) Māori healing and herbal: New Zealand ethnobotanical. Viking Sevenseas, Paraparaumu
    Rouleau E, Lefol C, Bourdon V, Coulet F, Noguchi T, Soubrier F, Bièche I et al (2009) Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome. Hum Mutat 30(6):867–875. doi:10.​1002/​humu.​20947 PubMed CrossRef
    Stevens MJ (2006) Kāi Tahu me te hopu tītī ki rakiura. J Pac Hist 41(3):273–291. doi:10.​1080/​0022334060098473​7 CrossRef
    Sudheer Pamidiamarri DVN, Pandya N, Reddy MP, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and garAFLP: genetic divergence and phylogenic analysis of genus Jatropha. Mol Biol Rep 36(5):901–907. doi:10.​1007/​s11033-008-9261-0 PubMed CrossRef
    Taylor CF (2009) Mutation scanning using high-resolution melting. Biochem Soc Trans 37:433–437. doi:10.​1042/​BST0370433 PubMed CrossRef
    Taylor J, Schenck I, Blankenberg D, Nekrutenko A (2007) Using galaxy to perform large‐scale iteractive data analyses. Curr Protocols Bioinform 10–15
    Telfer E, Graham N, Stanbra L, Manley T, Wilcox P (2013) Extraction of pine genomic DNA for use in a high-throughput genotyping platform. New Zealand J Forest Sci 43(1):1–8CrossRef
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578PubMedCentral PubMed CrossRef
    Van de Peer Y (2003) Phylogenetic inference based on distance methods in the phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge, p 107
    Vossen RH, Aten E, Roos A, Den Dunnen JT (2009) High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat 30(6):860–866. doi:10.​1002/​humu.​21019 PubMed CrossRef
    Walsh PS, Erlich HA, Higuchi R (1992) Preferential PCR amplification of alleles: mechanisms and solutions. Genome Res 1(4):241–250CrossRef
    Webby RF, Markham KR, Molloy BPJ (1987) The characterisation of New Zealand Podocarpus hybrids using flavonoid markers. New Zealand J Bot 25:355–366CrossRef
    Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49(6):853–860PubMed CrossRef
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829. doi:10.​1101/​gr.​074492.​107 PubMedCentral PubMed CrossRef
  • 作者单位:Christina W. Marshall (1)
    David Chagné (2)
    Oliver Deusch (1)
    Nicole Gruenheit (3)
    John McCallum (4)
    David Bergin (5)
    Peter J. Lockhart (1)
    Phillip L. Wilcox (6) (7)

    1. Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
    2. The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
    3. Faculty of Life Sciences, University of Manchester, Manchester, UK
    4. Plant & Food Research, Lincoln Research Centre, Lincoln, New Zealand
    5. Enivronmental Restoration Ltd., 53 Te Puea Road, RD4, Rotorua, 3074, New Zealand
    6. Scion, 49 Sala St, Private Bag 3020, Rotorua, New Zealand
    7. Department of Biochemistry, University of Otago, Dunedin, New Zealand
  • 刊物主题:Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-2950
文摘
Species of the genus Podocarpus are primarily found in the Southern Hemisphere. In New Zealand, there are four endemic species—Podocarpus acutifolius, Podocarpus nivalis, Podocarpus totara and Podocarpus cunninghamii. The last mentioned two species, tōtara and Hall’s tōtara, are the most economically and culturally important and have been used extensively for carving, timber and medicinal purposes. However, these species are often difficult to distinguish morphologically as seedlings and adults. Useable Po. totara and Po. cunninghamii timber resources are now scarce, and replanting of tōtara is very costly; therefore, cheap diagnostics for ensuring species identity would be useful for replanting. Using expressed sequence tag (EST)-aligned genomic DNA sequences from putative Po. totara × Po. cunninghamii hybrids, we designed 120 primers for high-resolution melting (HRM) assays. These were evaluated in a multi-stage screening process to identify markers that discriminate among New Zealand endemic Podocarpus species. Ten markers reproducibly differentiated at least one species from the other three, and six differentiated two or more species. One marker differentiated all four species. Moreover, two markers were able to identify ‘artifical’ F1 hybrids of Po. totara and Po. cunninghamii that had been created from mixing equal amounts of DNA from one genotype of each species. Markers also differentiated a non-New Zealand endemic, Podocarpus lawrencei. Phylogenetic analyses indicated that Po. acutifolius accessions were genetically most similar to those of Po. totara, while Po. nivalis was the most genetically distinct species. Our results show that HRM markers can be easily developed from small amounts of next-generation sequence data and used to identify species and determine their phylogenetic relationships.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700