Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA
详细信息    查看全文
  • 作者:Yang Yang ; Theodore A. Endreny ; David J. Nowak
  • 关键词:advection ; diffusion equation ; hydrograph ; flood wave propagation ; recession limb
  • 刊名:Journal of Earth Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:9-14
  • 全文大小:941 KB
  • 参考文献:Adamowski, J. F., 2008. Development of a Short-Term River Flood Forecasting Method for Snowmelt Driven Floods Based on Wavelet and Cross-Wavelet Analysis. Journal of Hydrology, 353(3/4): 247–266. doi:10.1016/j.jhydrol.2008.02.013CrossRef
    Andrews, E. D., 1980. Effective and Bankfull Discharges of Streams in the Yampa River Basin, Colorado and Wyoming. Journal of Hydrology, 46(3/4): 311–330. doi:10.1016/0022-1694(80)90084-0CrossRef
    Biggin, D. S., 1996. A Comparison of ERS-1 Satellite Radar and Aerial Photography for River Flood Mapping. Water and Environment Journal, 10(1): 59–64. doi:10.1111/j.1747-6593.1996.tb00009.xCrossRef
    Brakenridge, G. R., Nghiem, S. V., Anderson, E., et al., 2005. Space-Based Measurement of River Runoff. EOS, Transactions American Geophysical Union, 86(19): 185–188. doi:10.1029/2005eo190001CrossRef
    Brutsaert, W., 2005. Hydrology: An Introduction. Cambridge University Press, CambridgeCrossRef
    Burn, D. H., 1999. Perceptions of Flood Risk: A Case Study of the Red River Flood of 1997. Water Resources Research, 35(11): 3451–3458. doi:10.1029/1999wr900215CrossRef
    Campolo, M., Andreussi, P., Soldati, A., 1999. River Flood Forecasting with a Neural Network Model. Water Resources Research, 35(4): 1191–1197. doi:10.1029/1998wr900086CrossRef
    Cao, Z. X., Yue, Z. Y., Pender, G., 2011. Landslide Dam Failure and Flood Hydraulics. Part II: Coupled Mathematical Modelling. Natural Hazards, 59(2): 1021–1045. doi:10.1007/s11069-011-9815-7CrossRef
    Criss, R. E., Winston, W. E., 2008. Properties of a Diffusive Hydrograph and the Interpretation of Its Single Parameter. Mathematical Geosciences, 40(3): 313–325. doi:10.1007/s11004-008-9145-9CrossRef
    Criss, R. E., Osburn, G. R., House, R. S., 2009. The Ozark Plateaus: Missouri, in Caves and Karst of the USA. National Speleological Society, Huntsville AL
    Di Baldassarre, G., Montanari, A., 2009. Uncertainty in River Discharge Observations: A Quantitative Analysis. Hydrology and Earth System Sciences, 13(6): 913–921. doi:10.5194/hess-13-913-2009CrossRef
    Gillham, R. W., Sudicky, E. A., Cherry, J. A., et al., 1984. An Advection-Diffusion Concept for Solute Transport in Heterogeneous Unconsolidated Geological Deposits. Water Resources Research, 20(3): 369–378. doi:10.1029/wr020i003p00369CrossRef
    Järvelä, J., 2002. Flow Resistance of Flexible and Stiff Vegetation: A Flume Study with Natural Plants. Journal of Hydrology, 269(1/2): 44–54. doi:10.1016/s0022-1694(02)00193-2CrossRef
    Kirchner, J. W., Feng, X. H., Neal, C., 2001. Catchment-Scale Advection and Dispersion as a Mechanism for Fractal Scaling in Stream Tracer Concentrations. Journal of Hydrology, 254(1–4): 82–101. doi:10.1016/s0022-1694(01)00487-5CrossRef
    Kumar, A., Jaiswal, D. K., Kumar, N., 2010. Analytical Solutions to One-Dimensional Advection-diffusion Equation with Variable Coefficients in Semi-Infinite Media. Journal of Hydrology, 380(3/4): 330–337. doi:10.1016/j.jhydrol.2009.11.008CrossRef
    Liu, Y. B., Gebremeskel, S., De Smedt, F., et al., 2003. A Diffusive Transport Approach for Flow Routing in GISBased Flood Modeling. Journal of Hydrology, 283(1–4): 91–106. doi:10.1016/s0022-1694(03)00242-7CrossRef
    McDonnell, J. J., Beven, K., 2014. Debates—The Future of Hydrological Sciences: A (common) Path Forward? A Call to Action Aimed at Understanding Velocities, Celerities and Residence Time Distributions of the Headwater Hydrograph. Water Resources Research, 50(6): 5342–5350. doi:10.1002/2013wr015141CrossRef
    Meire, D., De Doncker, L., Declercq, F., et al., 2010. Modelling River-Floodplain Interaction during Flood Propagation. Natural Hazards, 55(1): 111–121. doi:10.1007/s11069-010-9554-1CrossRef
    Middelmann-Fernandes, M. H., 2010. Flood Damage Estimation beyond Stage-Damage Functions: An Australian Example. Journal of Flood Risk Management, 3(1): 88–96. doi:10.1111/j.1753-318x.2009.01058.xCrossRef
    Milzow, C., Kinzelbach, W., 2010. Accounting for Subgrid Scale Topographic Variations in Flood Propagation Modeling Using MODFLOW. Water Resources Research, 46(10): W10521. doi:10.1029/2009wr008088CrossRef
    Saint-Venant, B., 1871. Theory of Unsteady Water Flow, with Application to River Floods and to Propagation of Tides in River Channels. French Academy of Science, 73: 148–154
    Sakkas, J. G., Strelkoff, T., 1976. Dimensionless Solution of Dam-Break Flood Waves. Journal of the Hydraulics Division, 102(2): 171–184
    Singh, V. P., 1995. Computer Models of Watershed Hydrology. Water Resources Publications. Highlands Ranch, Colo
    Vineyard, J. D., Feder, G. L., 1982. Springs of Missouri: Revised Edn. WR29. Missouri Geological Survey and Water Resources, Jefferson City, MO
    Wurbs, R. A., James, W. P., 2002. Water Resources Engineering. Prentice Hall Upper Saddle River, New Jersey
    Yang, Y., Endreny, T. A., 2013. Watershed Hydrograph Model Based on Surface Flow Diffusion. Water Resources Research, 49(1): 507–516. doi:10.1029/2012wr012186CrossRef
    Yen, B. C., Tsai, C. W. S., 2001. On Noninertia Wave versus Diffusion Wave in Flood Routing. Journal of Hydrology, 244(1/2): 97–104. doi:10.1016/s0022-1694(00)00422-4CrossRef
    Younis, J., Anquetin, S., Thielen, J., 2008. The Benefit of High-Resolution Operational Weather Forecasts for Flash Flood Warning. Hydrology and Earth System Sciences, 12(4): 1039–1051. doi:10.5194/hess-12-1039-2008CrossRef
  • 作者单位:Yang Yang (1)
    Theodore A. Endreny (2)
    David J. Nowak (3)

    1. USDA Forest Service Northern Research Station & the Davey Institute, Syracuse, NY, 13210, USA
    2. Environmental Resource Engineering, SUNY ESF, Syracuse, NY, 13210, USA
    3. USDA Forest Service Northern Research Station, Syracuse, NY, 13210, USA
  • 刊物主题:Earth Sciences, general; Geotechnical Engineering & Applied Earth Sciences; Biogeosciences; Geochemistry; Geology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-111X
文摘
Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph’s rising limb and not to the falling limb. The downstream hydrograph’s falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advectiondiffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples. Key Words advection-diffusion equation hydrograph flood wave propagation recession limb

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700