Comparative investigation on nanomechanical properties of hardened cement paste
详细信息    查看全文
  • 作者:Wengui Li ; Shiho Kawashima ; Jianzhuang Xiao ; David J. Corr…
  • 关键词:Hardened cement paste ; Nanoindentation ; Modulus mapping ; Peak ; force quantitative nanomechanical mapping (QNM) ; Nanomechanical properties
  • 刊名:Materials and Structures
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:49
  • 期:5
  • 页码:1591-1604
  • 全文大小:1,764 KB
  • 参考文献:1.Sobolev K, Shah SP. Nanotechnology of concrete: recent developments and future perspectives, American Concrete Institute, Detroit, SP-254, 2008
    2.Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38(2):128–136CrossRef
    3.Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24:2060–2071CrossRef
    4.Šavija B, Luković M, Hosseini SAS, Pacheco J, Schlangen E (2014) Corrosion induced cover cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-ray spectrometry (EDS). Mater Struct. doi:10.​1617/​s11527-014-0292-9
    5.Mondal P, Shah SP, Marks LD (2008) Nanoscale characterization of cementitious materials. ACI Mater J 105(2):174–179
    6.Trtik P, Kaufmann J, Volz U (2012) On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste. Cem Concr Res 42(1):215–221CrossRef
    7.Jones CA, Grasley ZC, Ohlhausen JA (2012) Measurement of elastic properties of calcium silicate hydrate with atomic force microscopy. Cem Concr Compos 34(4):468–477CrossRef
    8.Davydov D, Jirásek M, Kopecký L (2011) Critical aspects of nano-indentation technique in application to hardened cement paste. Cem Concr Res 41(1):20–29CrossRef
    9.Sorelli L, Constantinides G, Ulm F-J, Toutlemonde F (2008) The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 38(12):1447–1456CrossRef
    10.Wang XH, Jacobsen S, Lee SF, He JY, Zhang ZL (2010) Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar. Mater Struct 43(1–2):125–139CrossRef
    11.Syed Asif SA, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90(3):1192–1200CrossRef
    12.Balooch G, Marshall GW, Marshall SH, Warren OL, Asif SAS, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37(8):1223–1232CrossRef
    13.Young TJ, Monclus MA, Burnett TL, Broughton WR, Ogin SL, Smith PA (2011) The use of the PeakForce™ quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas Sci Technol 22(12):125703CrossRef
    14.Sahin O, Erina N (2008) High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19(44):445717CrossRef
    15.Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef
    16.Constantinides G, Ulm F, Van Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36(3):191–196CrossRef
    17.Constantinides G, Ulm F-J (2007) The nanogranular nature of C-S-H. J Mech Phys Solids 55(1):64–90CrossRef MATH
    18.Randall NX, Vandamme M, Ulm F-J (2009) Nanoindentation analysis as a two dimensional tool for mapping the mechanical properties of complex surfaces. J Mater Res 24(3):679–690CrossRef
    19.Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP (2007) Micromechanical properties of a hydroxyapatite/poly-L-lactide biocomposite using nanoindentation and modulus mapping. J Eur Ceram Soc 27(2–3):1559–1564CrossRef
    20.Vanlandingham MR, McKnight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie J (1997) Nanoscale indentation of polymer systems using the atomic force microscope. J Adhes 64(1–4):31–59CrossRef
    21.Li WG, Xiao JZ, Kawashma S, Shekhawat GS, Shah SP (2014) Experimental investigation on quantitative nanomechanical properties of cement paste. ACI Mater J 111(1–6):603–612
    22.Miller M, Bobko C, Vandamme M, Ulm F-J (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38(4):467–476CrossRef
    23.Li WG, Xiao JZ, Sun ZH, Kawashima S, Shah SP (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr Build Mater 35:1045–1055CrossRef
    24.Xiao JZ, Li WG, Sun ZH, Lange DA, Shah SP (2013) Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cem Concr Compos 37:276–292CrossRef
    25.Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm F-J (2007) A multi-technique investigation of the nanoporosity of cement paste. Cem Concr Res 37(3):329–336CrossRef
    26.Constantinides G, Ulm F-J (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80CrossRef
    27.Vandamme M, Ulm F-J, Fonollosa P (2010) Nanogranular packing of C-S-H at substochiometric conditions. Cem Concr Res 40(1):14–26CrossRef
    28.Němeček J, Králík V, Vondřejc J (2013) Micromechanical analysis of heterogeneous structural materials. Cem Concr Compos 36:85–92CrossRef
    29.da Silva WRL, Němeček J, Štemberk P (2014) Methodology for nanoindentation-assisted prediction of macroscale elastic properties of high performance cementitious composites. Cem Concr Compos 45:57–68CrossRef
    30.Alizadeh R, Beaudoin JJ, Raki LR (2011) Mechanical properties of calcium silicate hydrates. Mater Struct 44(1):13–28CrossRef
    31.Fonseca PC, Jennings HM, Andrade JE (2011) A nanoscale numerical model of calcium silicate hydrate. Mech Mater 43(8):408–419CrossRef
    32.Masoero E, Del Gado E, Pellenq RJ-M, Ulm F-J, Yip S (2012) Nanostructure and nanomechanics of cement: polydisperse colloidal packing. Phys Rev Lett 109(15):155503CrossRef
    33.Kim JH, Balogun O, Shah SP (2010) Atomic force acoustic microscopy to measure nanoscale mechanical properties of cement pastes. J Transp Res Board 2141:102–108CrossRef
    34.Brehm D (2012) Size diversity in cement nanoparticles optimizes packing density to give concrete its strength, Department of Civil and Environmental Engineering (CEE) in MIT. http://​newsoffice.​mit.​edu/​2012/​size-diversity-in-cement-nanoparticles-optimizes-packing-density-to-give-concrete-its-strength
    35.Peled A, Castro J, Weiss J (2010) Atomic force microscopy examinations of mortar made by using water-filled lightweight aggregate. J Transp Res Board 2141(1):92–101CrossRef
  • 作者单位:Wengui Li (1) (2) (3)
    Shiho Kawashima (2) (4)
    Jianzhuang Xiao (3)
    David J. Corr (2)
    Caijun Shi (1)
    Surendra P. Shah (2)

    1. College of Civil Engineering, Hunan University, Changsha, 410082, Hunan, China
    2. Center for Advanced Cement-Based Materials, Northwestern University, Evanston, IL, 60208, USA
    3. Department of Structural Engineering, Tongji University, Shanghai, 200092, China
    4. Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027, USA
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
Three types of nanomechanical methods including static nanoindentation, modulus mapping and peak-force quantitative nanomechanical mapping (QNM) were applied to investigate the quantitative nanomechanical properties of the same indent location in hardened cement paste. Compared to the nanoindentation, modulus mapping and peak-force QNM allow for evaluating local mechanical properties of a smaller area with higher resolution. Beside, the ranges of elastic modulus distribution measured by modulus mapping and peak-force QNM are relatively greater than that obtained from nanoindentation, which may be due to a result of the shaper probe and local confinement effect between multiple phases. Moreover, the average value of elastic modulus obtained using peak-force QNM were consistent with those obtained by modulus mapping, while the different in modulus probability distribution could be related to the different nanomechancial theories and contact forces. The probability distributions of elastic modulus measured using nanomechanical methods to provide a basis for the different types of phases existing in cement paste. Based on the observation with high spatial resolution, cement paste can be likely found as nanocalse granular material, in which different submicron scale or basic nanoscale grain units pack together. It indicates that the peak-force QNM can effectively provide an effective insight into the nanostructure characteristic and corresponding nanomechanical properties of cement paste.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700