Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines
详细信息    查看全文
  • 作者:Melissa B Davis (1) (5)
    Inigo SanGil (2) (5)
    Grace Berry (3) (5)
    Rashidat Olayokun (4) (5)
    Lori H Neves (1)
  • 刊名:BMC Developmental Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:1583KB
  • 参考文献:1. Thummel CS: Puffs and gene regulation--molecular insights into the Drosophila ecdysone regulatory hierarchy. / Bioessays 1990, 12:561鈥?68. CrossRef
    2. Thummel CS: Flies on steroids--Drosophila metamorphosis and the mechanisms of steroid hormone action. / Trends Genet 1996, 12:306鈥?10. CrossRef
    3. Kozlova T, Thummel CS: Steroid regulation of postembryonic development and reproduction in Drosophila. / Trends Endocrinol Metab 2000, 11:276鈥?80. CrossRef
    4. Baehrecke EH: Steroid regulation of programmed cell death during Drosophila development. / Cell Death Differ 2000, 7:1057鈥?062. CrossRef
    5. Bender M: Metamorphosis in Drosophila: from molecular biology to mutants. / Trends Genet 1995, 11:335鈥?36. CrossRef
    6. Riddiford LM, Cherbas P, Truman JW: Ecdysone receptors and their biological actions. / Vitam Horm 2000, 60:1鈥?3. CrossRef
    7. Russell SR: Nuclear hormone receptors and the Drosophila ecdysone response. / Biochem Soc Symp 1996, 62:111鈥?21.
    8. Segraves WA: Steroid receptors and orphan receptors in Drosophila development. / Semin Cell Biol 1994, 5:105鈥?13. CrossRef
    9. Thummel CS: Molecular mechanisms of developmental timing in C. elegans and Drosophila. / Dev Cell 2001, 1:453鈥?65. CrossRef
    10. Thummel CS: Steroid-triggered death by autophagy. / Bioessays 2001, 23:677鈥?82. CrossRef
    11. Thummel CS: Ecdysone-regulated puff genes 2000. / Insect Biochem Mol Biol 2002, 32:113鈥?20. CrossRef
    12. Yin VP, Thummel CS: Mechanisms of steroid-triggered programmed cell death in Drosophila. / Semin Cell Dev Biol 2005, 16:237鈥?43. CrossRef
    13. Buszczak M, Segraves WA: Insect metamorphosis: out with the old, in with the new. / Curr Biol 2000, 10:R830鈥?33. CrossRef
    14. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V: Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. / Dev Biol 2003, 259:9鈥?8. CrossRef
    15. Guay PS, Guild GM: The ecdysone-induced puffing cascade in Drosophila salivary glands: a Broad-Complex early gene regulates intermolt and late gene transcription. / Genetics 1991, 129:169鈥?75.
    16. Thummel CS, Burtis KC, Hogness DS: Spatial and temporal patterns of E74 transcription during Drosophila development. / Cell 1990, 61:101鈥?11. CrossRef
    17. Ashburner M: Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. II. The effects of inhibitors of protein synthesis. / Dev Biol 1974, 39:141鈥?57. CrossRef
    18. Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM: SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. / Mol Cell 1999, 4:175鈥?86. CrossRef
    19. Plevin MJ, Mills MM, Ikura M: The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. / Trends Biochem Sci 2005, 30:66鈥?9. CrossRef
    20. Savkur RS, Burris TP: The coactivator LXXLL nuclear receptor recognition motif. / J Pept Res 2004, 63:207鈥?12. CrossRef
    21. Edwards DP: The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. / J Mammary Gland Biol Neoplasia 2000, 5:307鈥?24. CrossRef
    22. Leo C, Chen JD: The SRC family of nuclear receptor coactivators. / Gene 2000, 245:1鈥?1. CrossRef
    23. Qi C, Zhu Y, Reddy JK: Peroxisome proliferator-activated receptors, coactivators, and downstream targets. / Cell Biochem Biophys 2000, 32 Spring:187鈥?04. CrossRef
    24. Aranda A, Pascual A: Nuclear hormone receptors and gene expression. / Physiol Rev 2001, 81:1269鈥?304.
    25. Kino T, Vottero A, Charmandari E, Chrousos GP: Familial/sporadic glucocorticoid resistance syndrome and hypertension. / Ann N Y Acad Sci 2002, 970:101鈥?11. CrossRef
    26. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. / Nucleic Acids Res 2006, 34:D535鈥?39. CrossRef
    27. Leach M: Gene expression informatics. / Methods Mol Biol 2004, 258:153鈥?65.
    28. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, / et al.: A protein interaction map of Drosophila melanogaster. / Science 2003, 302:1727鈥?736. CrossRef
    29. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. / Genome Biol 2003, 4:P3. CrossRef
    30. Hu XD, Meng QH, Xu JY, Jiao Y, Ge CM, Jacob A, Wang P, Rosen EM, Fan S: BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity. / Biochem Biophys Res Commun 2010.
    31. Iyer AK, Zhang YH, McCabe ER: LXXLL motifs and AF-2 domain mediate SHP (NR0B2) homodimerization and DAX1 (NR0B1)-DAX1A heterodimerization. / Mol Genet Metab 2007, 92:151鈥?59. CrossRef
    32. Zhang T, Dong XC, Chen MB: Recognition of LXXLL by ligand binding domain of the Farnesoid 脳 receptor in molecular dynamics simulation. / J Chem Inf Model 2006, 46:2623鈥?630. CrossRef
    33. Dong DD, Jewell CM, Bienstock RJ, Cidlowski JA: Functional analysis of the LXXLL motifs of the human glucocorticoid receptor: association with altered ligand affinity. / J Steroid Biochem Mol Biol 2006, 101:106鈥?17. CrossRef
    34. Loinder K, Soderstrom M: An LXXLL motif in nuclear receptor corepressor mediates ligand-induced repression of the thyroid stimulating hormone-beta gene. / J Steroid Biochem Mol Biol 2005, 97:322鈥?27. CrossRef
    35. Tomkowicz B, Singh SP, Lai D, Singh A, Mahalingham S, Joseph J, Srivastava S, Srinivasan A: Mutational analysis reveals an essential role for the LXXLL motif in the transformation function of the human herpesvirus-8 oncoprotein, kaposin. / DNA Cell Biol 2005, 24:10鈥?0. CrossRef
    36. Loinder K, Soderstrom M: Functional analyses of an LXXLL motif in nuclear receptor corepressor (N-CoR). / J Steroid Biochem Mol Biol 2004, 91:191鈥?96. CrossRef
    37. Coulthard VH, Matsuda S, Heery DM: An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. / J Biol Chem 2003, 278:10942鈥?0951. CrossRef
    38. Litterst CM, Pfitzner E: An LXXLL motif in the transactivation domain of STAT6 mediates recruitment of NCoA-1/SRC-1. / J Biol Chem 2002, 277:36052鈥?6060. CrossRef
    39. Kawajiri K, Ikuta T, Suzuki T, Kusaka M, Muramatsu M, Fujieda K, Tachibana M, Morohashi K: Role of the LXXLL-motif and activation function 2 domain in subcellular localization of Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the 脳 chromosome, gene 1). / Mol Endocrinol 2003, 17:994鈥?004. CrossRef
    40. Heery DM, Hoare S, Hussain S, Parker MG, Sheppard H: Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. / J Biol Chem 2001, 276:6695鈥?702. CrossRef
    41. Chang C, Norris JD, Gron H, Paige LA, Hamilton PT, Kenan DJ, Fowlkes D, McDonnell DP: Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. / Mol Cell Biol 1999, 19:8226鈥?239.
    42. Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E, Becker S: Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. / Journal of Molecular Biology 2004, 336:319鈥?29. CrossRef
    43. Ko L, Cardona GR, Iwasaki T, Bramlett KS, Burris TP, Chin WW: Ser-884 adjacent to the LXXLL motif of coactivator TRBP defines selectivity for ERs and TRs. / Mol Endocrinol 2002, 16:128鈥?40. CrossRef
    44. Tung L, Shen T, Abel MG, Powell RL, Takimoto GS, Sartorius CA, Horwitz KB: Mapping the unique activation function 3 in the progesterone B-receptor upstream segment. Two LXXLL motifs and a tryptophan residue are required for activity. / J Biol Chem 2001, 276:39843鈥?9851. CrossRef
    45. Beckstead R, Ortiz JA, Sanchez C, Prokopenko SN, Chambon P, Losson R, Bellen HJ: Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. / Mol Cell 2001, 7:753鈥?65. CrossRef
    46. Ko L, Cardona GR, Chin WW: Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. / Proc Natl Acad Sci USA 2000, 97:6212鈥?217. CrossRef
    47. Needham M, Raines S, McPheat J, Stacey C, Ellston J, Hoare S, Parker M: Differential interaction of steroid hormone receptors with LXXLL motifs in SRC-1a depends on residues flanking the motif. / J Steroid Biochem Mol Biol 2000, 72:35鈥?6. CrossRef
    48. Cherbas L, Hu X, Zhimulev I, Belyaeva E, Cherbas P: EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. / Development 2003, 130:271鈥?84. CrossRef
    49. Courgeon AM: Action of insect hormones at the cellular level. Morphological changes of a diploid cell line of Drosophila melanogaster, treated with ecdysone and several analogues in vitro. / Exp Cell Res 1972, 74:327鈥?36. CrossRef
    50. Courgeon AM: Effects of - and -ecdysone on in vitro diploid cell multiplication in Drosophila melanogaster. / Nat New Biol 1972, 238:250鈥?51.
    51. Cherbas L, Koehler MM, Cherbas P: Effects of juvenile hormone on the ecdysone response of Drosophila Kc cells. / Dev Genet 1989, 10:177鈥?88. CrossRef
    52. Cherbas L, Willingham A, Zhang D, Yang L, Zou Y, Eads BD, Carlson JW, Landolin JM, Kapranov P, Dumais J, / et al.: The transcriptional diversity of 25 Drosophila cell lines. / Genome Res 2011, 21:301鈥?14. CrossRef
    53. Durand B, Vandaele C, Spencer D, Pantalacci S, Couble P: Cloning and characterization of dRFX, the Drosophila member of the RFX family of transcription factors. / Gene 2000, 246:285鈥?93. CrossRef
    54. Vandaele C, Coulon-Bublex M, Couble P, Durand B: Drosophila regulatory factor 脳 is an embryonic type I sensory neuron marker also expressed in spermatids and in the brain of Drosophila. / Mech Dev 2001, 103:159鈥?62. CrossRef
    55. Moshkin YM, Mohrmann L, van Ijcken WF, Verrijzer CP: Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. / Mol Cell Biol 2007, 27:651鈥?61. CrossRef
    56. Nakamura K, Ida H, Yamaguchi M: Transcriptional regulation of the Drosophila moira and osa genes by the DREF pathway. / Nucleic Acids Res 2008, 36:3905鈥?915. CrossRef
    57. Seto H, Hayashi Y, Kwon E, Taguchi O, Yamaguchi M: Antagonistic regulation of the Drosophila PCNA gene promoter by DREF and Cut. / Genes Cells 2006, 11:499鈥?12. CrossRef
    58. Kim TW, Kwon YJ, Kim JM, Song YH, Kim SN, Kim YJ: MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators. / Proc Natl Acad Sci USA 2004, 101:12153鈥?2158. CrossRef
    59. Pflumm MF, Botchan MR: Orc mutants arrest in metaphase with abnormally condensed chromosomes. / Development 2001, 128:1697鈥?707.
    60. Kohyama-Koganeya A, Kim YJ, Miura M, Hirabayashi Y: A Drosophila orphan G protein-coupled receptor BOSS functions as a glucose-responding receptor: loss of boss causes abnormal energy metabolism. / Proc Natl Acad Sci USA 2008, 105:15328鈥?5333. CrossRef
    61. Metcalf CE, Wassarman DA: Nucleolar colocalization of TAF1 and testis-specific TAFs during Drosophila spermatogenesis. / Dev Dyn 2007, 236:2836鈥?843. CrossRef
    62. Francis NJ, Follmer NE, Simon MD, Aghia G, Butler JD: Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. / Cell 2009, 137:110鈥?22. CrossRef
    63. Wang J, Lee CH, Lin S, Lee T: Steroid hormone-dependent transformation of polyhomeotic mutant neurons in the Drosophila brain. / Development 2006, 133:1231鈥?240. CrossRef
    64. Srinivasan S, Dorighi KM, Tamkun JW: Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. / PLoS Genet 2008, 4:e1000217. CrossRef
    65. Bhandari P, Gargano JW, Goddeeris MM, Grotewiel MS: Behavioral responses to odorants in drosophila require nervous system expression of the beta integrin gene myospheroid. / Chem Senses 2006, 31:627鈥?39. CrossRef
    66. Dressel U, Thormeyer D, Altincicek B, Paululat A, Eggert M, Schneider S, Tenbaum SP, Renkawitz R, Baniahmad A: Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. / Mol Cell Biol 1999, 19:3383鈥?394.
    67. Seago JE, Chernukhin IV, Newbury SF: The Drosophila gene twister, an orthologue of the yeast helicase SKI2, is differentially expressed during development. / Mech Dev 2001, 106:137鈥?41. CrossRef
    68. Zheng X, Wang J, Haerry TE, Wu AY, Martin J, O'Connor MB, Lee CH, Lee T: TGF-beta signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. / Cell 2003, 112:303鈥?15. CrossRef
    69. Hu X, Funder JW: The evolution of mineralocorticoid receptors. / Mol Endocrinol 2006, 20:1471鈥?478. CrossRef
    70. Bjoklund A, Thoren A, von Heijne G, Elofsson A: The use of phylogenetic profiles for gene predictions revisited. / Current Genomics 2006, 7:79鈥?6. CrossRef
    71. Chen JY, Mamidipalli S, Huan TX: HAPPI: an online database of comprehensive human annotated and predicted protein interactions. / BMC Genomics 2009., 10:
    72. Webb P, Anderson CM, Valentine C, Nguyen P, Marimuthu A, West BL, Baxter JD, Kushner PJ: The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). / Mol Endocrinol 2000, 14:1976鈥?985. CrossRef
    73. Murawska M, Kunert N, van Vugt J, Langst G, Kremmer E, Logie C, Brehm A: dCHD3, a novel ATP-dependent chromatin remodeler associated with sites of active transcription. / Mol Cell Biol 2008, 28:2745鈥?757. CrossRef
    74. Dinan L: Phytoecdysteroids: biological aspects. / Phytochemistry 2001, 57:325鈥?39. CrossRef
    75. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B: STRING: a database of predicted functional associations between proteins. / Nucleic Acids Research 2003, 31:258鈥?61. CrossRef
    76. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. / Nucleic Acids Research 2005, 33:D433-D437. CrossRef
    77. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, / et al.: STRING 8--a global view on proteins and their functional interactions in 630 organisms. / Nucleic Acids Res 2009, 37:D412鈥?16. CrossRef
    78. Zraly CB, Middleton FA, Dingwall AK: Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. / J Biol Chem 2006, 281:35305鈥?5315. CrossRef
    79. Echalier G, Ohanessian A: Isolement, en cultures in vitro, de lignees cellulaires diploides de Drosophila melanogaster . / C r hebd Seanc Acad Sci, Paris D Sci nat 1969, 268:1771鈥?773.
    80. Schneider I: Cell lines derived from late embryonic stages of Drosophila melanogaster . / Journal of Embryology and Experimental Morphology 1972, 27:353鈥?65.
    81. Milner MJ: The time during which beta-ecdysone is required for the differentiation in vitro and in situ of wing imaginal discs of Drosophila melanogaster. / Dev Biol 1977, 56:206鈥?12. CrossRef
    82. Peel DJ, Johnson SA, Milner MJ: The ultrastructure of imaginal disc cells in primary cultures and during cell aggregation in continuous cell lines. / Tissue Cell 1990, 22:749鈥?58. CrossRef
    83. Ui K, Ueda R, Miyake T: Cell lines from imaginal discs of Drosophila melanogaster. / In Vitro Cell Dev Biol 1987, 23:707鈥?11. CrossRef
    84. Hu X, Cherbas L, Cherbas P: Transcription activation by the ecdysone receptor (EcR/USP): identification of activation functions. / Mol Endocrinol 2003, 17:716鈥?31. CrossRef
  • 作者单位:Melissa B Davis (1) (5)
    Inigo SanGil (2) (5)
    Grace Berry (3) (5)
    Rashidat Olayokun (4) (5)
    Lori H Neves (1)

    1. Department of Genetics, University of Georgia, Athens, GA, 30502, USA
    5. Department of Human Genetics, Yale University School of Medicine New Haven, CT, 06511, New Haven, USA
    2. Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
    3. Columbia University School of Medicine, New York, New York, USA
    4. School of Public Health, Southern Connecticut University, New Haven, CT, 06511, USA
文摘
Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to further elucidate the dynamics of steroid specificity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700