Crystallization of novel poly(ε-caprolactone)-block-poly(propylene adipate) copolymers
详细信息    查看全文
  • 作者:Stavroula G. Nanaki (1)
    George Z. Papageorgiou (1)
    Dimitrios N. Bikiaris (1) dbic@chem.auth.gr
  • 关键词:Biodegradable – Block copolymers – PCL – Propylene adipate – Crystallization
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:108
  • 期:2
  • 页码:633-645
  • 全文大小:988.3 KB
  • 参考文献:1. Block C, Watzeels N, Rahier H, Van Mele B, Van Assche G. Rheology of nanocomposites: modelling and interpretation of nanofiller influence. J Therm Anal Calorim. 2011;105:731–6.
    2. Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology. Biomacromolecules. 2000;1:704–12.
    3. Bikiaris DN, Papageorgiou GZ, Giliopoulos DJ, Stergiou CA. Correlation between chemical and solid state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s. Macromol Biosci. 2008;8:728–40.
    4. Papadimitriou S, Bikiaris D. Novel self assembled core-shell nanoparticles based on crystalline-amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release. 2009;138:177–84.
    5. Bikiaris DN, Karavelidis V, Karavas E. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of Raloxifene HCl loaded nanoparticles. Molecules. 2009;14:2410–30.
    6. Seretoudi G, Bikiaris D, Panayiotou C. Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(ε-caprolactone) block copolymers. Polymer. 2002;43:5405–15.
    7. Hartlep H, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP. Study of two-stage processes for the microbial production of 1, 3-propanediol from glucose. Appl Microbiol Biotechnol. 2002;60:60–6.
    8. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN. Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enz Microbial Technol. 2004;35:648–53.
    9. Wang B, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, Ho RM. Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales. Polymer. 2001;42:7171–80.
    10. Liu Y, S?derqvist-Lindblad M, Ranucci E, Albertsson AC. New segmented poly(ester-urethane)s from renewable resources. J Polym Sci A. 2001;39:630–9.
    11. Papageorgiou GZ, Bikiaris DN. Synthesis, cocrystallization and enzymatic degradation of poly(butylene-co-propylene succinate) copolymers. Biomacromolecules. 2007;8:2437–49.
    12. Papageorgiou GZ, Vassiliou AA, Karavelidis VD, Koumbis A, Bikiaris DN. Novel poly(propylene terephthalate-co-succinate) random copolymers Synthesis, solid structure and enzymatic degradation study. Macromolecules. 2008;41:1675–84.
    13. Papadimitriou S, Bikiaris DN, Chrissafis K, Paraskevopoulos KM, Mourtas S. Synthesis characterization and thermal degradation mechanism of fast biodegradable PPSu/PCL copolymers. J Polym Sci A. 2007;45:5076–90.
    14. Papadimitriou SA, Papageorgiou GZ, Bikiaris D. Crystallization and enzymatic degradation of novel poly(ε-caprolactone-co-propylene succinate) copolymers. Eur Polym J. 2008;44:2356–66.
    15. Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev. 2002;54:39–99.
    16. Castillo RV, Müller AJ. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog Polym Sci. 2009;34(6):516–60.
    17. Hamley IW. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog Polym Sci. 2009;34:1161–210.
    18. Müller AJ, Balsamo V, Arnal ML. Nucleation and crystallization in diblock and triblock copolymers. Adv Polym Sci. 2005;190:1–63.
    19. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (A phase) investigated by differential scanning calorimetry. J Polym Sci B. 1993;31:1383–93.
    20. Müller AJ, Albuerne J, Marquez L, Raquez JM, Degée P, Dubois P, Hobbs J, Hamley IW. Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss. 2005;128:231–52.
    21. Boschetti-de-Fierro A, Lorenzo AT, Müller AJ, Schmalz H, Abetz V. Crystallization kinetics of PEO and PE in different triblock terpolymers: effect of microdomain geometry and confinement. Macromol Chem Phys. 2008;209:476–87.
    22. Endo M, Aida T, Onoue S. “Immortal” polymerization of ε-caprolactone initiated by aluminum porphyrin in the presence of alcohol. Macromolecules. 1987;20:2982–8.
    23. Kricheldorff HR, Berl M, Scharnagl N. Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules. 1988;21:286–93.
    24. Chen CH, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci. 2010;7:731–8.
    25. Chen CH, Lu HY, Chen M, Peng JS, Tsai CJ, Yang CS. Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate. J Appl Polym Sci. 2009;111:1433–9.
    26. Ko CY, Chen M, Wang HC, Tseng IM. Sequence distribution, crystallization and melting behavior of poly(ethylene terephthalate-co-trimethylene terephthalate) copolyesters. Polymer. 2005;46:8752–62.
    27. Barham PJ, Keller A, Otun EL, Holmes PA. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci. 1984;19:2781–94.
    28. Chatani Y, Okita Y, Tadoloro H, Yamashita Y. Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym J. 1970;1:555–62.
    29. Hoffman JD, Weeks JJ. Melting process and equilibrium melting temperature of polychlorotrifluoroethylene. Res Natl Bur Stand. 1962;66A:13–8.
    30. Hoffman JD, Davis GT, Lauritzen JI Jr. In: Hannay B. N, editor. Treatise on solid state chemistry, vol. 3, Chap 7. New York: Plenum Press; 1976.
    31. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules. 1975;8:909–15.
    32. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.
    33. Van Krevelen DW, Hopfytzer PJ. Properties of polymers, correlations with chemical structure. Amsterdam: Elsevier; 1972.
    34. Qiu Z, Ikehara T, Nishi T. Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer. 2003;44:2799–806.
    35. Ziska JJ, Barlow JW, Paul DR. Miscibility in PVC-polyester blend. Polymer. 1981;22:918–23.
    36. Avrami MJ. Kinetics of phase change. I: General theory. J Chem Phys. 1939;7:1103–12.
    37. Avrami MJ. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.
    38. Avrami MJ. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.
    39. Castillo RV, Müller AJ, Raquez JM, Dubois P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules. 2010;43:4149–60.
    40. Michell RM, Müller AJ, Deshayes G, Dubois P. Effect of sequence distribution on the isothermal crystallization kinetics and successive self-nucleation and annealing (SSA) behavior of poly(ε-caprolactone-co-ε-caprolactam) copolymers. Eur Polym J. 2010;46:1334–44.
    41. Hamley IW, Castelletto V, Castillo RV, Müller AJ, Martin CM, Pollet E, Dubois P. Crystallization in poly(l-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules. 2005;38:463–72.
    42. Achilias DS, Papageorgiou GZ, Karayannidis GP. Isothermal and nonisothermal crystallization kinetics of poly(propylene terephthalate). J Polym Sci B. 2004;42:3775–96.
    43. Supaphol P. Application of the Avrami, Tobin, Malkin, and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim Acta. 2001;370:37–48.
    44. Dangseeyun N, Shrimoaon P, Supaphol P, Nithitanakul M. Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochim Acta. 2004;409:63–77.
    45. Papageorgiou GZ, Bikiaris DN, Achilias DS. Effect of molecular weight on the cold-crystallization of biodegradable poly(ethylene succinate). Thermochim Acta. 2007;457:41–54.
    46. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.
    47. Chan TW, Isayev AI. Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci. 1994;34:461–71.
    48. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in Polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.
    49. Papageorgiou GZ, Achilias DS, Karayannidis GP. Estimation of thermal transitions in poly(ethylene naphthalate): experiments and modeling using isoconversional methods. Polymer. 2010;51:2565–75.
    50. Sorrentino L, Iannace S, Di Maio E, Acierno D. Isothermal crystallization kinetics of chain-extended PET. J Polym Sci B. 2005;43:1966–72.
    51. Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics and melting behaviour of the novel biodegradable polyesters poly(propylene azelate) and poly(propylene sebacate). Macromol Chem Phys. 2009;210:90–107.
    52. Immergut EH, Grulke EA, Abe A, Bloch DR. In: Brandrup J, editor. Polymer handbook. 4th ed. New York: Wiley; 1999.
    53. Thomas DG, Stavely LAK. A study of the supercooling of drops of some molecular liquids. J Chem Soc. 1952;4569–77.
  • 作者单位:1. Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Macedonia, Greece
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Poly(ε-caprolactone)-block-poly(propylene adipate) (PCL-block-PPAd) copolymers were prepared using a combination of polycondensation and ring opening polymerization of ε-CL. 1H-NMR and 13C-NMR spectroscopy showed that the prepared copolymers were block. Also, the copolymer composition was calculated from NMR spectra and was found similar to the feeding ratio. The copolymers formed PCL crystals as was proved by WAXD. The crystallization rates and degree of crystallinity, measured from DSC crystallization experiments, decreased with PPAd content. The equilibrium melting points of PCL were estimated applying the Hoffmann–Weeks method and the observed melting point depression was analyzed using the Nishi–Wang equation which showed that there is some miscibility of the copolymer segments. Isothermal crystallization experiments after self-nucleation were performed to distinguish the nucleation and crystal growth stages during isothermal crystallization. The secondary nucleation theory was then used and the obtained data for crystallization rates, estimated from the inverse of the crystallization half-times, were analyzed. The resulting values for nucleation constant K g, and also for the surface free energies and work of chain folding, increased with PPAd content due to topological restrictions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700