Improving Hydrological Process Modeling Using Optimized Threshold-Based Wavelet De-Noising Technique
详细信息    查看全文
  • 作者:Peyman Abbaszadeh
  • 关键词:Precipitation process ; Wavelet neural network ; Wavelet De ; noising technique
  • 刊名:Water Resources Management
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:30
  • 期:5
  • 页码:1701-1721
  • 全文大小:2,609 KB
  • 参考文献:Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1–4):28–40. doi:10.​1016/​j.​jhydrol.​2011.​06.​013 CrossRef
    Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-aridwatersheds. J Hydrol 390(1–2):85–91. doi:10.​1016/​j.​jhydrol.​2010.​06.​033 CrossRef
    Addison PS, Murrary KB, Watson JN (2001) Wavelet transform analysis of open channel wake flows. J Eng Mech 127(1):58–70CrossRef
    Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid neural network for rainfall-runoff process modeling. Neurocomputing 121:470–480. doi:10.​1016/​j.​neucom.​2013.​05.​023 CrossRef
    Chou CM (2011) A threshold based wavelet denoising method for hydrological data modelling. Water Resour Manag 25:1809–1830. doi:10.​1007/​s11269-011-9776-3 CrossRef
    Coulibaly P, Bobee B, Anctil F (2001) Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrol Process 15:1533–1536. doi:10.​1002/​hyp.​445 CrossRef
    Donoho DH (1995) De-noising by soft-thresholding. IEEE Trans Inform Theory 41(3):613–617. doi:10.​1109/​18.​382009 CrossRef
    Fatichi S, Barbosa SM, Caporali E, Silva ME (2009) Deterministic versus stochastic trends: detection and challenges. J Geophys Res 114:D18121. doi:10.​1029/​2009JD011960 CrossRef
    Georgakakos K, Bras RL (1984) A hydrologically useful station precipitation model 1. formulation. Water Resour Res 20(11):1585–1596. doi:10.​1029/​WR020i011p01585 CrossRef
    Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081CrossRef
    Kisi O (2015) Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resour Manag 25(2):579–600CrossRef
    Krishna B, Satyaji Rao YR, Nayak PC (2011) Time series modeling of river flow using wavelet neural networks. J Water Resource Prot 3(1):50–59. doi:10.​4236/​jwarp.​2011.​31006 CrossRef
    Kumar S, Tiwari MK, Chatterjee C, Mishra A (2015) Reservoir inflow forecasting using ensemble models based on neural networks, wavelet analysis and bootstrap method. Water Resour Manag 29(13):4863–4883. doi:10.​1007/​s11269-009-9414-5 CrossRef
    Makridakis S, Hibon M (1995) Evaluating accuracy (or error) measures. working paper. INSEAD, Fontainebleau
    Mallat SG (1998) A wavelet tour of signal processing. Academic, San Diego
    Martyn PC, David ER, Ross AW, Xiaogu Z, Richard PI, Andrew GS, Jochen S, Michael JU (2008) Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model. Adv Water Resour 31:1309–1324CrossRef
    Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147CrossRef
    Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part i—a discussion of principles. J Hydrol 10:282–290. doi:10.​1016/​0022-1694(70)90255-6 CrossRef
    Nourani V, Komasi M, Mano A (2009) A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resour Manag 23(14):2877–2894. doi:10.​1007/​s11269-009-9414-5 CrossRef
    Nourani V, Tahershamsi A, Abbaszadeh P, Shahrabi J, Hadavandi E (2014) A new hybrid algorithm for rainfall–runoff process modeling based on the wavelet transform and genetic fuzzy system. J Hydroinform 16(5):1004–1024. doi:10.​2166/​hydro.​2014.​035 CrossRef
    Petroselli A, Grimaldi S, Romano N (2013) Curve-Number/Green-Ampt mixed procedure for net rainfall estimation: a case study of the Mignone Watershed, IT. Procedia Environ Sci 19:113–121. doi:10.​1016/​j.​proenv.​2013.​06.​013 CrossRef
    Sang YF, Wang D, Wu JC, Zhu QP, Wang L (2009) The relation between periods’ identification and noises in hydrologic series data. J Hydrol 368(1–4):165–177. doi:10.​1016/​j.​jhydrol.​2009.​01.​042 CrossRef
    Sardy S, Tseng P, Bruce A (2001) Robust wavelet de-nosing. IEEE T Sign Proces 49(6):1146–1152CrossRef
    Scheuerer M (2014) Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics. Q J R Meteorol Soc 140(680):1086–1096. doi:10.​1002/​qj.​2183 CrossRef
    Seo Y, Kim K, Singh P (2015) Estimating spatial precipitation using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach. Water Resour Manag 29(7):2189–2204CrossRef
    Shih YY, Chen JC, Liu RS (2005) Development of wavelet de-noising technique for PET images. Comput Med Imag Grap 29:297–304. doi:10.​1016/​j.​compmedimag.​2004.​12.​002 CrossRef
    Sivakumar B, Liong S, Liaw C, Phoon K (1999) Singapore rainfall behavior: chaotic? J Hydrol Eng 4(1):38–48CrossRef
    Veerakachen W, Raksapatcharawong M (2015) Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data. Adv Space Res 56(6):1139–1145. doi:10.​1016/​j.​asr.​2015.​06.​016 CrossRef
    Yu W, Nakakita E, Kim S, Yamaguchi K (2015) Improvement of rainfall and flood forecasts by blending ensemble NWP rainfall with radar prediction considering orographic rainfall. J Hydrol 531(2):494–507. doi:10.​1016/​j.​jhydrol.​2015.​04.​055 CrossRef
  • 作者单位:Peyman Abbaszadeh (1)

    1. Remote Sensing and Water Resources Lab, Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geotechnical Engineering
    Meteorology and Climatology
    Civil Engineering
    Environment
  • 出版者:Springer Netherlands
  • ISSN:1573-1650
文摘
The extent of the noise on hydrological data is inevitable, which reduces the efficiency of Data-Driven Models (DDMs). Despite of this fact that the DDMs such as Artificial Neural Network (ANN) are capable of nonlinear functional mapping between a set of input and output variables, but refining of the time series through data pre-processing methods can provide with the possibility to increase the performance of these set of models. The main objective of this study is to propose a new method called Optimized Threshold-Based Wavelet De-noising technique (OTWD) to de-noise hydrological time series and improve the prediction accuracy while the DDM is being used. For this purpose, in the first step, Wavelet-ANN (WNN) model was developed for identifying suitable wavelet function and maximum decomposition level. Afterward, sub-signals of original precipitation time series which were determined in the first step were de-noised by using of OTWD technique. Therefore, these clean sub-signals of precipitation time series were imposed as input data to the ANN to predict the precipitation one time step ahead. The results showed that OTWD technique could improve the efficiency of WNN model dramatically; this outcome was reported by the different efficiency criterions such as Nash-Sutcliffe Efficiency (NSE = 0.92), Root Mean Squared Error (RMSE = 0.0103), coefficient correlation of linear regression (R = 0.93), Peak Value Criterion (PVC = 0.021) and Low Value Criterion (LVC = 0.026). The best fitted WNN model in comparison by proposed model showed weaker performance by the NSE, RMSE, R, PVC and LVC values of 0.86, 0.043, 0.87, 0.034 and 0.045, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700