Studies of fiber-matrix debonding
详细信息    查看全文
  • 作者:Navneet Dronamraju ; Johannes Solass…
  • 关键词:single fibre ; cohesive zone model ; interface debonding ; carbon fiber reinforced composite (CFRP)
  • 刊名:Frontiers of Architecture and Civil Engineering in China
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:9
  • 期:4
  • 页码:448-456
  • 全文大小:621 KB
  • 参考文献:1.Pattabhi Ramaiah B, Rammohan B, Vijay Kumar S, Satish Babu D, Raghuatnhan R. Aero-elastic analysis of stiffened composite wing structure. Advances in Vibration Engineering, 2009, 8(3): 255鈥?64
    2.Sudhir Sastry Y B, Budarapu P R, Madhavi N, Krishna Y. Buckling analysis of thin wall stiffened composite panels. Computational Materials Science, 2015, 96(B): 459鈥?71CrossRef
    3.Frolov V A. Strength of a composite material for structural applications. Mechanics of Composite Materials, 1987, 23(2): 148鈥?54CrossRef
    4.Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2鈥?2CrossRef
    5.BP O鈥橰ourke. The uses of composite materials in the design and manufacture of formula 1 racing cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1990, 204: 41鈥?8
    6.Parga-Landa B, Hern谩ndez-Olivares F. Analytical model to predict behaviour of soft armours. International Journal of Impact Engineering, 1995, 16(3): 455鈥?66CrossRef
    7.Anderson C E Jr, Bodner S R. Ballistic impact: The status of analytical and material modeling. International Journal of Impact Engineering, 1988, 7(1): 9鈥?5CrossRef
    8.Naik N K, Shrirao P. Composite structures under ballistic impact. Composite Structures, 2004, 66(1-4): 579鈥?90CrossRef
    9.James C. Leslie, The use of composite material increase the availability of oil and gas and reduce the cost of drilling and production operations. Proc. SPIE 6531, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, 65310E, 2007
    10.Anderson C E Jr, Bodner S R. Ballistic impact: The status of analytical and material modeling. International Journal of Impact Engineering, 1988, 7(1): 9鈥?5CrossRef
    11.Naik N K, Shrirao P. Composite structures under ballistic impact. Composite Structures, 2004, 66(1鈥?): 579鈥?90CrossRef
    12.Katz S, Grossman E, Gouzman I, Murat M, Wiesel E, Wagner H D. Response of composite materials to hypervelocity impact. International Journal of Impact Engineering, 2008, 35(12): 1606鈥?611CrossRef
    13.Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128鈥?40CrossRef
    14.Scoutis C. Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering: A, 2005, 412(1鈥?): 171鈥?76CrossRef
    15.Paipetis A S. Room vs. temperature studies of model composites: Modes of failure of carbon fibre/epoxy interfaces. Composite Interfaces, 2012, 19(2): 135鈥?58
    16.Xu Z, Li J, Wu X, Huang Y, Chen L, Zhang G. Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface. Composites. Part A, Applied Science and Manufacturing, 2008, 39(2): 301鈥?07CrossRef
    17.Zhao J, Ho K K C, Shamsuddin S R, Bismarck A, Dutschk V. A comparative study of fibre/matrix interface in glass fibre reinforced polyvinylidene fluoride composites. Colloids Surfaces A Physicochem, Eng Asp, 2012, 413: 58鈥?4CrossRef
    18.Nath R B, Fenner D N, Galiotis C. Progressional approach to interfacial failure in carbon reinforced composites: Elasto-plastic finite element modelling of interface cracks. Composites. Part A, Applied Science and Manufacturing, 2000, 31(9): 929鈥?43CrossRef
    19.Kim B W, Nairn J A. Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites. Journal of Composite Materials, 2002, 36(15): 1825鈥?858CrossRef
    20.Ho H, Drzal L T. Non-linear numerical study of the single-fiber fragmentation test Part I: Test mechanics. Composites Engineering, 1995, 5(10鈥?1): 1231鈥?244CrossRef
    21.Yang S W, Budarapu P R, Roy Mahapatra D, Bordas S, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96(B): 382鈥?95CrossRef
    22.Budarapu P R, Gracie R, Yang SW, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modelling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126鈥?43CrossRef
    23.Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129鈥?148MATH CrossRef
    24.Sudhir Sastry Y B, Krishna Y, Budarapu P R. Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 2015, 96(B): 416鈥?24CrossRef
    25.Budarapu P R, Yb S S, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151鈥?59CrossRef
    26.Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17鈥?0): 1645鈥?669MATH MathSciNet CrossRef
    27.Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6鈥?): 641鈥?58MATH MathSciNet CrossRef
    28.Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid鈥搒tructure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48鈥?1MATH MathSciNet
    29.Robert G, Belytschko T. Concurrently coupled atomistic and XFEM models for dislocations and cracks. International Journal for Numerical Methods in Engineering, 2008, 78: 354鈥?78
    30.Rabczuk T, Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743鈥?60MATH CrossRef
    31.Rabczuk T, Bordas S P, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473鈥?95MATH CrossRef
    32.Bordas S P, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943鈥?60CrossRef
    33.Gracie R, Belytschko T. Adaptive continuum-atomistic simulations of dislocation dynamics. International Journal for Numerical Methods in Engineering, 2011, 86(4鈥?): 575鈥?97MATH CrossRef
    34.Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29鈥?0): 2777鈥?799MATH MathSciNet CrossRef
    35.Rabczuk T, Areias P M A, Belytschko T. A simplified meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993鈥?021MATH MathSciNet CrossRef
    36.Rabczuk T, Song J H, Belytschko T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730鈥?41CrossRef
    37.Rabczuk T, Zi G, Bordas S P, Nguyen-Xuan H. A simple and robust threedimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37鈥?0): 2437鈥?455MATH CrossRef
    38.Turon A, Camanho P P, Costa J, D谩vila C G. A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 2006, 38(11): 1072鈥?089CrossRef
    39.Irwin G R. Fracture. Handbuch der Physik. Flugge S, ed. Berlin: Springer, 1958, VI: 551鈥?90
    40.Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 1977, 9(4): 931鈥?38CrossRef
    41.Shivakumar K N. Tan,PW. Newman, JC. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. International Journal of Fracture, 1988, 36: R43鈥揜50
    42.Krueger R. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 2004, 57(2): 109鈥?43MathSciNet CrossRef
    43.Raju I S. Calculation of strain-energy release rates with higher order and singular finite elements. Engineering Fracture Mechanics, 1987, 28(3): 251鈥?74CrossRef
    44.Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968, 35(2): 379鈥?86MathSciNet CrossRef
    45.Hellen T K. On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering, 1975, 9(1): 187鈥?07MATH MathSciNet CrossRef
    46.Parks D M. A stiffness derivative finite element technique of crack tip stress intensity factors. International Journal of Fracture, 1974, 10(4): 487鈥?02MathSciNet CrossRef
    47.Griffith A A. The phenomenon of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1921, 221(582鈥?93): 163鈥?98CrossRef
    48.Turon A, Costa J, Camanho P P, Davila, C G. Simulation of delamination propagation in composites under high-cycle fatigue by means of cohesive-zone models, NASA/TM 214532 1鈥?8, 2006
    49.Turon A, Camanho P P, Costa J, D谩vila C G. Mechanics of Materials, 2006, 38: 1072鈥?089CrossRef
    50.Turon A, Costa J, Camanho P P, D谩vila C G. Composites. Part A, Applied science and manufacturing, 2008, 38: 2270鈥?282CrossRef
    51.Kumar S, Singh I V, Mishra B K. A homogenized XFEM approach to simulate fatigue crack growth problems. Computers & Structures, 2015, 150: 1鈥?2CrossRef
    52.Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425鈥?466MathSciNet CrossRef
    53.Kumar S, Singh I V, Mishra B K. A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials. Theoretical and Applied Fracture Mechanics, 2014, 72: 121鈥?35CrossRef
    54.Agarwal A, Singh I V, Mishra B K. Numerical prediction of elastoplastic behaviour of interpenetrating phase composites by EFGM. Composites. Part B, Engineering, 2013, 51: 327鈥?36CrossRef
    55.Bhardwaj G, Singh I V, Mishra B K, Bui T Q. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Composite Structures, 2015, 126: 347鈥?59CrossRef
    56.Bhardwaj G, Singh I V, Mishra B K. Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 186鈥?29MathSciNet CrossRef
    57.Dugdale D S. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100鈥?04CrossRef
    58.Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7(C): 55鈥?29MathSciNet CrossRef
    59.Ba啪ant Z P, Jir谩sek M. Nonlocal integral formulations of plasticity and damage: Survey of progress. Journal of Engineering Mechanics, 2002, 128(11): 1119鈥?149CrossRef
    60.Alfano G, Crisfield M A. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering, 2001, 50(7): 1701鈥?736MATH CrossRef
    61.Fujimoto T, Kagami J, Kawaguchi T, Hatazawa T. Microdisplacement characteristics under tangential force. Wear, 2000, 241(2): 136鈥?42CrossRef
    62.Grzemba B, Pohrt R, Teidelt E, Popov V L. Maximum micro-slip in tangential contact of randomly rough self-affine surfaces. Wear, 2014, 309(1鈥?): 256鈥?58CrossRef
    63.Design M, Section C S, Technical N, Introduction I. An artificial damping method for the harmonically excited non-linear systems. 1988, 120: 597鈥?08
    64.Kim S. Artificial damping in multigrid methods. Applied Mathematics Letters, 2001, 14(3): 359鈥?64MATH MathSciNet CrossRef
  • 作者单位:Navneet Dronamraju (1)
    Johannes Solass (1)
    J枚rg Hildebrand (1)

    1. Simulation und Experiment, Bauhaus-Universit盲t Weimar, Weimar, 99423, Germany
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Cities, Countries and Regions
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:1673-7512
文摘
In this paper, the debonding of a single fiber-matrix system of carbon fiber reinforced composite (CFRP) AS4/Epson 828 material is studied using Cohesive Zone Model (CZM). The effect of parameters namely, maximum tangential contact stress, tangential slip distance and artificial damping coefficient on the debonding length at the interface of the fiber-matrix is analyzed. Contact elements used in the CZM are coupled based on a bilinear stress-strain curve. Load is applied on the matrix, tangential to the interface. Hence, debonding is observed primarily in Mode II.Wide range of values are considered to study the inter-dependency of the parameters and its effect on debonding length. Out of the three parameters mentioned, artificial damping coefficient and tangential slip distance significantly affect debonding length. A thorough investigation is recommended for case wise interface debonding analysis, to estimate the optimal parametric values while using CZM. Keywords single fibre cohesive zone model interface debonding carbon fiber reinforced composite (CFRP)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700