Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers
详细信息    查看全文
  • 作者:Debora Baroni (1)
    Olga Zegarra-Moran (2)
    Agneta Svensson (3)
    Oscar Moran (1)
  • 关键词:Small ; angle X ; ray scattering ; Bilayer ; Cystic fibrosis transmembrane conductance regulator (CFTR) ; Potentiator ; Corrector
  • 刊名:European Biophysics Journal
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:43
  • 期:6-7
  • 页码:341-346
  • 全文大小:
  • 参考文献:1. Bobadilla JL, Macek MJ, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat 19:575鈥?06 CrossRef
    2. Brzustowicz MR, Brunger AT (2005) X-ray scattering from unilamellar lipid vesicles. J Appl Cryst 38:126鈥?31 CrossRef
    3. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526鈥?28 CrossRef
    4. Gianotti A, Melani R, Caci E, Sondo E, Ravazzolo R, Galietta LJV, Zegarra-Moran O (2013) Epithelial sodium channel silencing as a strategy to correct the airway surface fluid deficit in cystic fibrosis. Am J Respir Cell Mol Biol 49:445鈥?52 CrossRef
    5. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, H盲usermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:248鈥?25 CrossRef
    6. Haydon DA, Hendry BM, Levinson SR, Requena J (1977) The molecular mechanisms of anaesthesia. Nature 268:356鈥?58 CrossRef
    7. Hirai M, Iwase H, Hayakawa T, Koizumi M, Takahashi H (2003) Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophys J 85:1600鈥?610 CrossRef
    8. Kucerka N, Pencer J, Sachs JN, Nagle JF, Katsaras J (2007) Curvature effect on the structure of phospholipid bilayers. Langmuir 23:1292鈥?299 CrossRef
    9. Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211鈥?17 CrossRef
    10. Lopes LB, Scarpa MV, Silva GVJ, Rodrigues DC, Santilli CV, Oliveira AG (2004) Studies on the encapsulation of diclofenac in small unilamellar liposomes of soya phosphatidylcholine. Colloids Surf B Biointerfaces 39:151鈥?58 CrossRef
    11. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076鈥?086
    12. MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297鈥?03 CrossRef
    13. Mateu L, Moran O (1986) Reversible changes in myelin structure and electrical activity during anesthesia in vivo. Biochim Biophys Acta 862:17鈥?6 CrossRef
    14. Moran O, Galietta LJV, Zegarra-Moran O (2005) Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell Mol Life Sci 62:446鈥?60 CrossRef
    15. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high-quality X-ray data. Phys Rev E62:4000鈥?009
    16. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, D艡ev铆nek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordo帽ez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663鈥?672 CrossRef
    17. Su C, Wu S, Jeng U, Lee M, Su A, Liao K, Lin W, Huang Y, Chen C (2013) Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochim Biophys Acta 1828:528鈥?34 CrossRef
    18. Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843鈥?8848 CrossRef
  • 作者单位:Debora Baroni (1)
    Olga Zegarra-Moran (2)
    Agneta Svensson (3)
    Oscar Moran (1)

    1. Istituto di Biofisica, CNR, via De Marini, 6, 16149, Genoa, Italy
    2. Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, via Gerolamo Gaslini, 5, 16148, Genoa, Italy
    3. Cells-Alba, Carretera, BP 1413, 08290, Cerdanyola del Vall猫s, Barcelona, Spain
  • ISSN:1432-1017
文摘
Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors are new drugs that target the basic CFTR protein defect and are expected to benefit cystic fibrosis patients. To optimize the substances so far proposed for human use, and to minimise unwanted side effects, it is essential to investigate possible interactions between the drugs and cell components. We used small-angle X-ray scattering with synchrotron radiation to analyse the effects of two representative drugs, the potentiator VX-770 (Ivacaftor), approved for human use, and the corrector VX-809 (Lumacaftor), on a model phospholipid membrane. By reconstruction of the electron density profile of unilamellar vesicles treated with VX-770 or VX-809 we found that these drugs penetrate the phospholipid bilayer. VX-809 becomes homogeneously distributed throughout the bilayer whereas VX-770 accumulates predominantly in the internal leaflet, behaviour probably favoured by the asymmetry of the bilayer, because of vesicle curvature. Penetration of the bilayer by these drugs, probably as part of the mechanisms of permeation, causes destabilization of the membrane; this must be taken into account during future drug development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700