Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase
详细信息    查看全文
  • 作者:Wei Wang (1)
    Rajan Hollmann (1)
    Wolf-Dieter Deckwer (1)
  • 刊名:Proteome Science
  • 出版年:2006
  • 出版时间:December 2006
  • 年:2006
  • 卷:4
  • 期:1
  • 全文大小:2893KB
  • 参考文献:1. Harwood CR:Bacillus subtilis and its relatives: molecular biological and industrial workhorses. / Trends Biotechnol 1992,10(7):247鈥?6. CrossRef
    2. Ferrari E, Jarnagin AS, Schmidt BF: Commercial production of extracellular enzymes. / Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, physiology, and Molecular Genetics / (Edited by: Sonenheim AL, Hoch JA, Losick R). Washington DC: American Society for Microbiology Press 1993, 917鈥?37.
    3. Schallmey M, Singh A, Ward OP: Developments in the use of Bacillus species for industrial production. / Can J Microbiol 2004,50(1):1鈥?7. CrossRef
    4. Westers L, Westers H, Quax WJ:Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. / Biochim Biophys Acta 2004,1654(1鈥?):299鈥?10. CrossRef
    5. Vary PS: Prime time for Bacillus megaterium . / Microbiology 1994,140(Pt 5):1001鈥?3. CrossRef
    6. Malten M, Hollmann R, Deckwer WD, Jahn D: Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium . / Biotechnol Bioeng 2005,89(2):206鈥?8. CrossRef
    7. Wang W, Hollmann R, Furch T, Nimtz M, Malten M, Jahn D, Deckwer WD: Proteomic analysis of a recombinant Bacillus megaterium strain during heterologous production of a glucosyltransferase. / Proteome Sci 2005, 3:4. CrossRef
    8. Malten M, Biedendieck R, Gamer M, Drews AC, Stammen S, Buchholz K, Dijkhuizen L, Jahn D: A Bacillus megaterium plasmid system for the production, export, and one-step purification of affinity-tagged heterologous levansucrase from growth medium. / Appl Environ Microbiol 2006,72(2):1677鈥?. CrossRef
    9. Yang Y, Malten M, Grote A, Jahn D, Deckwer WD: Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium . / Biotechnol Bioeng, / in press.
    10. J眉rgen B, Lin HY, Riemschneider S, Scharf C, Neubauer P, Schmid R, Hecker M, Schweder T: Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. / Biotechnol Bioeng 2000,70(2):217鈥?4. CrossRef
    11. J眉rgen B, Hanschke R, Sarvas M, Hecker M, Schweder T: Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. / Appl Microbiol Biotechnol 2001,55(3):326鈥?2. CrossRef
    12. J眉rgen B, Tobisch S, Wumpelmann M, Gordes D, Koch A, Thurow K, Albrecht D, Hecker M, Schweder T: Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources. / Biotechnol Bioeng 2005,92(3):277鈥?8. CrossRef
    13. Sun J, Wang W, Hundertmark C, Zeng AP, Jahn D, Deckwer WD: A protein database constructed from low-coverage genomic sequence of Bacillus megaterium and its use for accelerated proteomic analysis. / J Biotechnol 2006, 124:486鈥?95. CrossRef
    14. Wang W, Sun J, Hollmann R, Zeng AP, Deckwer WD: Proteomiccharacterization of transient expression and secretion of a stress-related metalloprotease in high cell density culture of Bacillus megaterium . / J Biotechnol, / in press.
    15. Hecker M, V枚lker U: Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. / Proteomics 2004,4(12):3727鈥?0. CrossRef
    16. Voigt B, Schweder T, Becher D, Ehrenreich A, Gottschalk G, Feesche J, Maurer KH, Hecker M: A proteomic view of cell physiology of Bacillus licheniformis . / Proteomics 2004,4(5):1465鈥?0. CrossRef
    17. Wieczorek R, Pries A, Steinb眉chel A, Mayer F: Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus . / J Bacteriol 1995, 177:2425鈥?435.
    18. York GM, Stubbe J, Sinskey AJ: New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. / J Bacteriol 2001, 183:2394鈥?397. CrossRef
    19. Lee TR, Lin JS, Wang SS, Shaw GC: PhaQ, a new class of poly-beta-hydroxybutyrate (phb)-responsive repressor, regulates phaQ and phaP (phasin) expression in Bacillus megaterium through interaction with PHB. / J Bacteriol 2004, 186:3015鈥?1. CrossRef
    20. York GM, Junker BM, Stubbe JA, Sinskey AJ: Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. / J Bacteriol 2001, 183:4217鈥?226. CrossRef
    21. Rinas U: Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduction of basic fibroblast growth factor by recombinant Escherichia coli . / Biotechnol Prog 1996,12(2):196鈥?00. CrossRef
    22. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM: Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. / Microbiol Mol Biol Rev 2000,64(3):515鈥?7. CrossRef
    23. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM: Proteomics of protein secretion by Bacillus subtilis : separating the "secrets" of the secretome. / Microbiol Mol Biol Rev 2004,68(2):207鈥?3. CrossRef
    24. Jongbloed JD, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, Pries F, Quax WJ, van Dijl JM, Braun PG: Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis . / J Biol Chem 2002,277(46):44068鈥?8. CrossRef
    25. Herbort M, Klein M, Manting EH, Driessen AJ, Freudl R: Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. / J Bacteriol 1999, 181:493鈥?00.
    26. Leloup L, Driessen AJ, Freudl R, Chambert R, Petit-Glatron MF: Differential dependence of levansucrase and alpha-amylase secretion on SecA (Div) during the exponential phase of growth of Bacillus subtilis . / J Bacteriol 1999, 181:1820鈥?.
    27. Zanen G, Houben EN, Meima R, Tjalsma H, Jongbloed JD, Westers H, Oudega B, Luirink J, van Dijl JM, Quax WJ: Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis . / FEBS J 2005,272(18):4617鈥?0. CrossRef
    28. Stephenson K, Harwood CR: Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis . / Appl Environ Microbiol 1998,64(8):2875鈥?1.
    29. Sarvas M, Harwood CR, Bron S, van Dijl JM: Post-translocational folding of secretory proteins in Gram-positive bacteria. / Biochim Biophys Acta 2004,1694(1鈥?):311鈥?7.
    30. Jensen CL, Stephenson K, Jorgensen ST, Harwood C: Cell-associated degradation affects the yield of secreted engineered and heterologous proteins in the Bacillus subtilis expression system. / Microbiology 2000,146(Pt 10):2583鈥?4.
    31. Clausen T, Southan C, Ehrmann M: The HtrA family of proteases: implications for protein composition and cell fate. / Mol Cell 2002,10(3):443鈥?5. CrossRef
    32. Noone D, Howell A, Devine KM: Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. / J Bacteriol 2000,182(6):1592鈥?. CrossRef
    33. Noone D, Howell A, Collery R, Devine KM: YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis , engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. / J Bacteriol 2001,183(2):654鈥?3. CrossRef
    34. Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Pragai Z, Bron S, van Dijl JM, Kontinen VP: A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. / Mol Microbiol 2001,41(5):1159鈥?2. CrossRef
    35. Hyyrylainen HL, Sarvas M, Kontinen VP: Transcriptome analysis of the secretion stress response of Bacillus subtilis . / Appl Microbiol Biotechnol 2005,67(3):389鈥?6. CrossRef
    36. Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM: A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis . / J Bacteriol 2002,184(20):5661鈥?1. CrossRef
    37. Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S, Kuipers OP, Devine KM, Hecker M, van Dijl JM: The extracellular proteome of Bacillus subtilis under secretion stress conditions. / Mol Microbiol 2003,49(1):143鈥?6. CrossRef
    38. Westers H, Darmon E, Zanen G, Veening JW, Kuipers OP, Bron S, Quax WJ, van Dijl JM: The Bacillus secretion stress response is an indicator for alpha-amylase production levels. / Lett Appl Microbiol 2004,39(1):65鈥?3. CrossRef
    39. Vitikainen M, Hyyrylainen HL, Kivimaki A, Kontinen VP, Sarvas M: Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. / J Appl Microbiol 2005,99(2):363鈥?5. CrossRef
    40. Fabret C, Feher VA, Hoch JA: Two-component signal transduction in Bacillus subtilis : how one organism sees its world. / J Bacteriol 1999,183(9):2795鈥?02.
    41. Rygus T, Scheler A, Allmansberger R, Hillen W: Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. / Arch Microbiol 1991,155(6):535鈥?2. CrossRef
    42. Kihara A, Akiyama Y, Ito K: FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. / Proc Natl Acad Sci 1995,92(10):4532鈥?. CrossRef
    43. Akiyama Y, Kihara A, Tokuda H, Ito K: FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. / J Biol Chem 1996,271(49):31196鈥?01. CrossRef
    44. Lysenko E, Ogura T, Cutting SM: Characterization of the ftsH gene of Bacillus subtilis . / Microbiology 1997,143(Pt 3):971鈥?. CrossRef
    45. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH: InterPro, progress and status in 2005. [http://www.ebi.ac.uk/interpro] / Nucleic Acids Res 2005, (33 Database):D201鈥?.
    46. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. [http://www.cbs.dtu.dk/services/SignalP/] / J Mol Biol 2004,340(4):783鈥?5. CrossRef
    47. Howell A, Dubrac S, Andersen KK, Noone D, Fert J, Msadek T, Devine K: Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. / Mol Microbiol 2003,49(6):1639鈥?5. CrossRef
    48. Fabret C, Hoch JA: Two-component signal transduction system essential for growth of Bacillus subtilis : implications for anti-infective therapy. / J Bacteriol 1998,180(23):6375鈥?3.
    49. Martin PK, Li T, Sun D, Biek DP, Schmid MB: Role in cell permeability of an essential two-component system in Staphylococcus aureus . / J Bacteriol 1999,181(12):3666鈥?3.
    50. Fukuchi K, Kasahara Y, Asai K, Kobayashi K, Moriya S, Ogasawara N: The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis . / Microbiology 2000,146(Pt 7):1573鈥?3.
    51. Howell A, Dubrac S, Noone D, Varughese KI, Devine K: Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis : the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. / Mol Microbiol 2006,59(4):1199鈥?15. CrossRef
    52. Dubrac S, Msadek T: Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus . / J Bacteriol 2004,186(4):1175鈥?1. CrossRef
    53. Mohedano ML, Overweg K, de la Fuente A, Reuter M, Altabe S, Mulholland F, de Mendoza D, Lopez P, Wells JM: Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. / J Bacteriol 2005,187(7):2357鈥?7. CrossRef
    54. Szurmant H, Nelson K, Kim EJ, Perego M, Hoch JA: YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis . / J Bacteriol 2005,187(15):5419鈥?6. CrossRef
    55. Smith TJ, Blackman SA, Foster SJ: Autolysins of Bacillus subtilis : multiple enzymes with multiple functions. / Microbiology 2000, 146:249鈥?62.
    56. Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, Suginaka H: An autolysin ring associated with cell separation of Staphylococcus aureus . / J Bacteriol 1996,178(6):1565鈥?1.
    57. Baba T, Schneewind O: Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus . / EMBO J 1998,17(16):4639鈥?6. CrossRef
    58. Takahashi J, Komatsuzawa H, Yamada S, Nishida T, Labischinski H, Fujiwara T, Ohara M, Yamagishi J, Sugai M: Molecular characterization of an atl null mutant of Staphylococcus aureus . / Microbiol Immunol 2002,46(9):601鈥?2.
    59. Merad T, Archibald AR, Hancock IC, Harwood CR, Hobot JA: Cell wall assembly in Bacillus subtilis : visualization of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid. / J Gen Microbiol 1989,135(3):645鈥?5.
    60. Weart RB, Levin PA: Growth rate-dependent regulation of medial FtsZ ring formation. / J Bacteriol 2003,185(9):2826鈥?4. CrossRef
    61. Haldenwang WG: The sigma factors of Bacillus subtilis . / Microbiol Rev 1995,59(1):1鈥?0.
    62. Cosby WM, Zuber P: Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. / J Bacteriol 1997,179(21):6778鈥?7.
    63. Han WD, Kawamoto S, Hosoya Y, Fujita M, Sadaie Y, Suzuki K, Ohashi Y, Kawamura F, Ochi K: A novel sporulation-control gene (spo0M) of Bacillus subtilis with a sigmaH-regulated promoter. / Gene 1998,217(1鈥?):31鈥?0. CrossRef
    64. Lazazzera BA, Kurtser IG, McQuade RS, Grossman AD: An autoregulatory circuit affecting peptide signaling in Bacillus subtilis . / J Bacteriol 1999,181(17):5193鈥?00.
    65. Wittchen KD, Meinhardt F: Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. / Appl Microbiol Biotechnol 1995,42(6):871鈥?77. CrossRef
    66. Wittchen KD, Strey J, B眉ltmannn A, Reichenberg S, Meinhardt F: Molecular characterization of the operon comprising the spoIV gene of Bacillus megaterium DSM319 and generation of a deletion mutant. / J Gen Appl Microbiol 1998, 44:317鈥?26. CrossRef
    67. Lazazzera BA, Solomon JM, Grossman AD: An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis . / Cell 1997,89(6):917鈥?5. CrossRef
    68. Lazazzera BA, Grossman AD: The ins and outs of peptide signaling. / Trends Microbiol 1998,6(7):288鈥?4. CrossRef
    69. Rudner DZ, LeDeaux JR, Ireton K, Grossman AD: The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. / J Bacteriol 1991,73(4):1388鈥?8.
    70. Koide A, Hoch JA: Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation. / Mol Microbiol 1994,13(3):417鈥?6. CrossRef
    71. Yazgan A, Ozcengiz G, Marahiel MA: Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin. / Biochim Biophys Acta 2001,1518(1鈥?):87鈥?4.
    72. Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA: The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. / Mol Microbiol 1991,5(1):173鈥?5. CrossRef
    73. M眉nch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, Jahn D: Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. / Bioinformatics 2005,21(22):4187鈥?. CrossRef
    74. Gominet M, Slamti L, Gilois N, Rose M, Lereclus D: Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. / Mol Microbiol 2001,40(4):963鈥?5. CrossRef
    75. Turner MS, Helmann JD: Mutations in multidrug efflux homologues, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the 蟽 X and W factors in Bacillus subtilis . / J Bacteriol 2000,182(18):5202鈥?210. CrossRef
    76. Cao M, Helmann JD: The Bacillus subtilis extracytoplasmic-function 蟽 X factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. / J Bacteriol 2004,186(4):1136鈥?6. CrossRef
    77. Allenby NE, O'Connor N, Pragai Z, Ward AC, Wipat A, Harwood CR: Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis . / J Bacteriol 2005,187(23):8063鈥?0. CrossRef
    78. Corvey C, Stein T, D眉sterhus S, Karas M, Entian K-D: Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. / Biochem Biophys Res Commun 2003, 304:48鈥?4. CrossRef
    79. Kleerebezem M: Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. / Peptides 2004,25(9):1405鈥?4. CrossRef
    80. Fundoiano-Hershcovitz Y, Rabinovitch L, Shulami S, Reiland V, Shoham G, Shoham Y: The ywad gene from Bacillus subtilis encodes a double-zinc aminopeptidase. / FEMS Microbiol Lett 2005,243(1):157鈥?3. CrossRef
    81. Price CW, Fawcett P, Ceremonie H, Su N, Murphy CK, Youngman P: Genome-wide analysis of the general stress response in Bacillus subtilis . / Mol Microbiol 2001,41(4):757鈥?4. CrossRef
    82. van Schaik W, Zwietering MH, de Vos WM, Abee T: Identification of 蟽 B -dependent genes in Bacillus cereus by proteome and in vitro transcription analysis. / J Bacteriol 2004,186(13):4100鈥?. CrossRef
    83. Johnson BA, Anker H, Meleney FL: Bacitracin: a new antibiotic produced by a member of the B. subtilis group. / Science 1945, 102:376鈥?77. CrossRef
    84. Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel R, Grabnar M:Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. / Mol Microbiol 1995, 16:969鈥?76. CrossRef
    85. Podlesek Z, Comino A, Herzog-Velikonja B, Grabnar M: The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. / FEMS Microbiol Lett 2000, 188:103鈥?06. CrossRef
    86. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD: Cell wall stress responses in Bacillus subtilis : the regulatory network of the bacitracin stimulon. / Mol Microbiol 2003,50(5):1591鈥?04. CrossRef
    87. Lamanda A, Zahn A, Roder D, Langen H: Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. / Proteomics 2004,4(3):599鈥?08. CrossRef
    88. Rabilloud T, Strub JM, Luche S, van Dorsselaer A, Lunardi J: A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. / Proteomics 2001,1(5):699鈥?04. CrossRef
    89. Wang W, Sun J, Nimtz M, Deckwer WD, Zeng AP: Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences. / Proteome Sci 2003,1(1):6. CrossRef
  • 作者单位:Wei Wang (1)
    Rajan Hollmann (1)
    Wolf-Dieter Deckwer (1)

    1. Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124, Braunschweig, Germany
文摘
High cell density cultivations were performed under identical conditions for two Bacillus megaterium strains (MS941 and WH320), both carrying a heterologous dextransucrase (dsrS) gene under the control of the xylA promoter. At characteristic points of the cultivations (end of batch, initial feeding, before and after induction) the proteome was analyzed based on two dimensional gel electrophoresis and mass spectrometric protein identification using the protein database "bmegMEC.v2" recently made available. High expression but no secretion of DsrS was found for the chemical mutant WH320 whereas for MS 941, a defined protease deficient mutant of the same parent strain (DSM319), not even expression of DsrS could be detected. The proteomic analysis resulted in the identification of proteins involved in different cellular pathways such as in central carbon and overflow metabolism, in protein synthesis, protein secretion and degradation, in cell wall metabolism, in cell division and sporulation, in membrane transport and in stress responses. The two strains exhibited considerable variations in expression levels of specific proteins during the different phases of the cultivation process, whereas induction of DsrS production had, in general, little effect. The largely differing behaviour of the two strains with regard to DsrS expression can be attributed, at least in part, to changes observed in the proteome which predominantly concern biosynthetic enzymes and proteins belonging to the membrane translocation system, which were strongly down-regulated at high cell densities in MS941 compared with WH320. At the same time a cell envelope-associated quality control protease and two peptidoglycan-binding proteins related to cell wall turnover were strongly expressed in MS941 but not found in WH320. However, to further explain the very different physiological responses of the two strains to the same cultivation conditions, it is necessary to identify the mutated genes in WH320 in addition to the known lacZ. In view of the results of this proteomic study it seems that at high cell density conditions and hence low growth rates MS941, in contrast to WH320, does not maintain a vegetative growth which is essential for the expression of the foreign dsrS gene by using the xylA promoter. It is conceivable that applications of a promoter which is highly active under nutrient-limited cultivation conditions is necessary, at least for MS941, for the overexpression of recombinant genes in such B. megaterium fed-batch cultivation process. However to obtain a heterologous protein in secreted and properly folded form stills remains a big challenge.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700