Atomic Decompositions of Hardy Spaces with Variable Exponents and its Application to Bounded Linear Operators
详细信息    查看全文
  • 作者:Yoshihiro Sawano (1)
  • 关键词:Primary 41A17 ; Secondary 42B25 ; 42B35 ; 26A33 ; Hardy spaces ; fractional integral operators ; atomic decomposition
  • 刊名:Integral Equations and Operator Theory
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:77
  • 期:1
  • 页码:123-148
  • 全文大小:386KB
  • 参考文献:1. Adams D.R.: A note on Riesz potentials. Duke Math. J. 42, 765鈥?78 (1975) CrossRef
    2. Almeida A., H盲st枚 P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628鈥?655 (2010) CrossRef
    3. Cruz-Uribe D., Diening L., H盲st枚 P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361鈥?74 (2011)
    4. Cruz-Uribe SFO, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkh盲user (2013)
    5. Cruz-Uribe, SFO, D., Fiorenza, A., Martell, J.M., P茅rez, C.: The boundedness of classical operators on variable / L / p spaces, Ann. Acad. Sci. Fenn. Math. 31, 239鈥?64 (2006)
    6. Diening L.: Maximal functions on generalized ${L^{p(\cdot)}}$ L p ( 路 ) spaces. Math. Inequal. Appl. 7(2), 245鈥?53 (2004)
    7. Diening, L., Harjulehto, P., H盲st枚 P., Ru菙i膷ka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)
    8. Diening L., H盲st枚 P., Roudenko R.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731鈥?768 (2009) CrossRef
    9. Diening L., Harjulehto P., H盲st枚 P., Mizuta Y., Shimomura T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503鈥?22 (2009)
    10. Diening, L., Samko, S.: Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal. 10(1), 1鈥?8 (2007)
    11. H盲st枚 P.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2), 263鈥?78 (2009)
    12. Ho K.P.: Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces. Anal. Math. 38(3), 173鈥?85 (2012) CrossRef
    13. Gunawan H., Sawano Y., Sihwaningrum I.: Fractional integral operators in nonhomogeneous spaces. Bull. Aust. Math. Soc. 80(2), 324鈥?34 (2009) CrossRef
    14. Izuki M.: Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 13(10), 243鈥?53 (2009)
    15. Izuki M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59(2), 199鈥?13 (2010) CrossRef
    16. Izuki M.: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 40(3), 343鈥?55 (2010)
    17. Iida T., Sato E., Sawano Y., Tanaka H.: Weighted norm inequalities for multilinear fractional operators on Morrey spaces. Studia Math. 205(2), 139鈥?70 (2011) CrossRef
    18. Karapetyants N.K., Ginzburg A.I.: Fractional integrals and singular integrals in the H枚lder classes of variable order. Integral Transform. Spec. Funct. 2(2), 91鈥?06 (1994) CrossRef
    19. Karapetyants N.K., Ginzburg A.I.: Fractional integro-differentiation in H枚lder classes of variable order. Dokl. Akad. Nauk 339(4), 439鈥?41 (1994)
    20. Kokilashvili V., Paatashvili V.: On Hardy classes of analytic functions with a variable exponent. Proc. A. Razmadze Math. Inst 142, 134鈥?37 (2006)
    21. Kov鈥檃膷ik O., R鈥檃kosn鈥檏 J.: On spaces / L / p ( / x) and / W / k, / p ( / x). Czechoslovak Math. J. 41(116), 592鈥?18 (1991)
    22. Kokilashvili V., Samko S.: Maximal and fractional operators in weighted / L / p( / x) spaces. Rev. Mat. Iberoamericana 20(2), 493鈥?15 (2004) CrossRef
    23. Ky, L.D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, arXiv:1103.3757
    24. Ephremidze L., Kokilashvili V., Samko S.: Fractional, maximal and singular operators in variable exponent Lorentz spaces. Fract. Calc. Appl. Anal. 11(4), 407鈥?20 (2008)
    25. Luxenberg, W.: Banach Function Spaces. Technische Hogeschool te Delft Assen, Assen (1955)
    26. Mizuta Y., Shimomura T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60, 583鈥?02 (2008) CrossRef
    27. Mizuta Y., Shimomura T.: Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent. Math. Inequal. Appl. 13, 99鈥?22 (2010)
    28. Mizuta Y., Shimomura T.: Continuity properties of Riesz potentials of Orlicz functions. Tohoku Math. J. 61, 225鈥?40 (2009) CrossRef
    29. Mizuta Y., Shimomura T.: Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent. Math. Inequal. Appl. 13(1), 99鈥?22 (2010)
    30. Mizuta Y., Shimomura T., Sobukawa T.: Sobolev鈥檚 inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46, 255鈥?71 (2009)
    31. Nakai E., Sawano Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665鈥?748 (2012) CrossRef
    32. Nakano, H.: Modulared Semi-Ordered Linear Spaces. pp. i+288, MR0038565, Maruzen Co., Ltd., Tokyo (1950)
    33. Nakano, H.: Topology of Linear Topological Spaces. pp. viii+281, MR0046560, Maruzen Co., Ltd., Tokyo, (1951)
    34. Nekvinda A.: Hardy鈥揕ittlewood maximal operator on ${L^{p(x)}({{\mathbb{R}}})}$ L p ( x ) ( R ) . Math. Inequal. Appl. 7(2), 255鈥?65 (2004)
    35. Olsen, A.: Fractional integration, Morrey spaces and a Schr枚ndinger equation, Commun. Partial Diff. Equ. 20 (11 and 12), 2005鈥?055 (1995)
    36. Orlicz, W.: 脺ber R盲ume ( / L / M ). Bull. Acad. Pol. Sc. Lett. Ser. A 93鈥?07 (1936)
    37. Rafeiro H., Samko S.G.: Approximative method for the inversion of the Riesz potential operator in variable Lebesgue spaces. Fract. Calc. Appl. Anal. 11(3), 269鈥?80 (2008)
    38. Rafeiro, H., Samko, S.G.: Variable exponent Campanato spaces. J. Math. Sci. (N. Y.), 172 (1), 143鈥?64 (2011) (Problems in mathematical analysis. No. 51)
    39. Samko S.G.: Some classical operators of variable order in variable exponent analysis. Oper. Theory Adv. Appl. 193, 281鈥?01 (2009)
    40. Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71(4), 653鈥?62 (2013)
    41. Sawano Y., Sugano S., Tanaka H.: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Am. Math. Soc. 363(12), 6481鈥?503 (2011) CrossRef
    42. Sawano Y., Sugano S., Tanaka H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36, 517鈥?56 (2012) CrossRef
    43. Samko S.: Convolution and potential type operators in the space / L / p( / x). Integral Transform Special Funct. 7(3鈥?), 261鈥?84 (1998) CrossRef
    44. Samko N., Vakulov B.: Spherical fractional and hypersingular integrals in generalized H枚lder spaces with variable characteristic. Math. Nachrichten 284, 355鈥?69 (2011) CrossRef
    45. Samko N., Samko S.G., Vakulov B.: Fractional integrals and hypersingular integrals in variable order H枚lder spaces on homogeneous spaces. Armen. J. Math. 2(2), 38鈥?4 (2009)
    46. Sugano S.: Some inequalities for generalized fractional integral operators on generalized Morrey spaces. Math Inequal. Appl. 14(4), 849鈥?65 (2011)
    47. Stein E.M.: Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)
    48. Str枚mberg, J.O., Torchinsky, A.: Weighted Hardy spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)
    49. Vakulov, B.G.: Spherical potentials in weighted H枚lder spaces of variable order. Dokl. Akad. Nauk, 400(1) (2005), 7鈥?0. Translated in Doklady Mathematics 71(1), 1鈥? (2005)
    50. Vakulov B.G.: Spherical potentials of complex order in the variable order H枚lder spaces. Integral Transforms Spec. Funct. 16(5-6), 489鈥?97 (2005) CrossRef
  • 作者单位:Yoshihiro Sawano (1)

    1. 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
文摘
As applications of atomic decomposition results of Hardy spaces with variable exponents, we shall prove the boundedness of commutators and the fractional integral operators as well as the Hardy operators. There are many ways to prove such boundedness. For example, the boundedness of commutators can be proved by the sharp maximal inequalities. But here, we propose a different method based upon our atomic decomposition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700