Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure
详细信息    查看全文
  • 作者:Fu-Lin Li ; Rui Fu ; Di Feng ; Zhi-Ling Tian
  • 关键词:Rene88DT alloy ; Directional solidification ; Isothermal compression ; Constitutive equation ; Processing map
  • 刊名:Rare Metals
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:34
  • 期:1
  • 页码:51-63
  • 全文大小:2,899 KB
  • 参考文献:1. Reed RC. The Superalloys Fundamental and Applications. Cambridge: Cambridge University Press; 2006. 1. CrossRef
    2. Sims CT, Stoloff NS, Hagel WC. Superalloys. Canada: Wiley—Interscience Press; 1987. 1.
    3. Viswanathan GB, Sarosi PM, Whitis DH, Mills MJ. Deformation mechanism at intermediate creep temperatures in the Ni-base superalloy Rene88DT. Mater Sci Eng A. 2005;400-01:489. CrossRef
    4. Huron E, Srivatsa S, Raymond E. Control of grain size via forging strain rate limits for Rene88DT. In: Proceedings of the International Symposium on Superalloys. Pennsylvania; 2000. 49.
    5. Krueger. Fatigue crack growth resistance nickel-base article and alloy method for making, US Patent. No.4957567.1990; 1990.
    6. Guo JT. Material Science and Engineering for Superalloys. Beijing: Science Press; 2008. 6.
    7. Feng D, Fu R, Chen XC. The equipment and methods of the electroslag remelting continuous directional solidification (ESR-CDS) Technology. China Patent, No.201010614036.0; 2010.
    8. Fu R, Chen XC, Feng D. The microstructure and hot deformation behavior of ESR-CDS Rene88DT alloy. J Aeronaut Mater. 2011;31(3):8.
    9. Fu R. The Electroslag Remelting Continuous Directional Solidification (ESR-CDS) Technology Research. Postdoctor report of Central Iron & Steel Research Institute, Beijing; 2011. 1.
    10. Prasad YVRK, Gegel HL, Doraivelu SM. Modeling of dynamic materials behavior in hot deformation: forging of Ti-6242. Metall Trans A. 1984;15:1883.
    11. Wu K, Liu GQ, Hu BF, Wang CY, Zhang YW, Tao Y, Liu JT. Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater Sci Eng A. 2011;528:4620. CrossRef
    12. Ravichandran N, Prasad YVRK. Dynamic recrystallization during hot deformation of aluminium: a study using processing maps. Metall Trans A. 1991;22:2339. CrossRef
    13. Ning YQ, Yao ZK, Li H, Guo HZ, Tao Y, Zhang YW. High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy. Mater Sci Eng A. 2010;527:961. CrossRef
    14. Ning YQ, Yao ZK, Fu MW, Guo HZ. Dynamic recrystallization of the hot isostatically pressed P/M superalloy FGH4096 in hot working process. Mater Sci Eng A. 2010;527:6968. CrossRef
    15. Zhang MJ, Li FG, Wang SY, Liu ChY. Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy. Mater Sci Eng A. 2010;527:6771. CrossRef
    16. Li L, Zhang XM. Hot compression deformation behavior and processing parameters of a cast Mg–Gd–Y–Zr alloy. Mater Sci Eng A. 2011;528:1396. CrossRef
    17. Mostafaei MA, Kazeminezhad M. Hot deformation behavior of hot extruded Al-Mg alloy. Mater Sci Eng A. 2012;535:216. CrossRef
    18. Hu HY, Yang JC, Zhu FJ. Hot deformation characteristics of as-cast and homogenized AZ61 Mg alloys under compression. Mater Sci Eng A. 2012;550:273. CrossRef
    19. Samantaray D, Mandal S, Bhaduri AK. Optimization of hot working parameters for thermo-mechanical processing of modified 9Cr-Mo (P91) steel employing dynamic materials model. Mater Sci Eng A. 2011;528:5204. CrossRef
    20. Li H, Li MQ, Han T. The deformation behavior of isothermally compressed Ti-17 titanium alloy in α+β field. Mater Sci Eng A. 2012;546:40. CrossRef
    21. Gu Y, Zhong Z, Yuan Y. An advanced cast-and-wrought superalloy (TMW-4M3) for turbine disk applications beyond 700°C. In: Proceedings of the International Symposium on Superalloys. Pennsylvania; 2012. 903.
    22. Ning YQ,
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
The hot deformation characteristics of Rene88DT superalloy with directionally solidified microstructure produced by electroslag remelting continuous directionally solidification (ESR-CDS?) were studied in the temperature range of 1,040-,140?°C and strain rate range of 0.001-.000?s? by hot compression tests. Flow curves for Rene88DT alloy with initial directionally solidified (DS) microstructure exhibit pronounced peak stresses at the early stage of deformation followed by the occurrence of dynamic softening phenomenon. Rene88DT alloy with DS microstructure shows higher flow peak stresses compared with HIPed P/M superalloy FGH4096, but the disparities in peak stresses between ESR-CDSed Rene88DT and HIPed P/M superalloy FGH4096 reduce as temperature increases. The improvement of hot workability of DS alloy with columnar grains avoiding the maximum shear stress comes true. A hot deformation constitutive equation as a function of strain that describes the dependence of flow stress on strain rate and temperature is established. Hot deformation apparent activation energy (Q) varies not only with the strain rate and temperature but also with strain. The strain rate sensitivity exponent (m) map is established at the strain of 0.8, which reveals that global dynamic recrystallization (DRX) shows a relatively high m value in a large strain compression. Optimum parameters are predicted in two regions: T?=?1,100-,130?°C, \({\dot{\varepsilon}}\) ?=?0.100-.000?s? and T?=?1,080-,100?°C, \({\dot{\varepsilon}}\) ?=?0.010-.100?s?, which is based on processing maps and deformation microstructure observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700