Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures
详细信息    查看全文
  • 作者:Ping Ou ; Long Li ; Xing-Fei Xie ; Jian Sun
  • 关键词:Super304H steel ; Cu ; rich precipitate ; Creep ; Threshold stress
  • 刊名:Acta Metallurgica Sinica (English Letters)
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:28
  • 期:11
  • 页码:1336-1343
  • 全文大小:1,080 KB
  • 参考文献:[1]Y. Sawaragi, S. Hirano, in Mechanical Behaviour of Materials, ed. by M. Jono, T. Inone (Pergamon Press, London, 1992), pp. 589–594
    [2]R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert, J. Mater. Eng. Perform. 14, 281 (2005)CrossRef
    [3]C.Y. Chi, H.Y. Yu, J.X. Dong, W.Q. Liu, S.C. Cheng, Z.D. Liu, X.S. Xie, Prog. Nat. Sci. 22, 175 (2012)CrossRef
    [4]C.Y. Chi, H.Y. Yu, J.X. Dong, X.S. Xie, Z.Q. Cui, X.F. Chen, F.S. Lin, Acta Metall. Sin. (Engl. Lett.) 24, 141 (2011)
    [5]P. Ou, H. Xing, X.L. Wang, J. Sun, Mater. Sci. Eng. A 600, 171 (2014)CrossRef
    [6]P. Ou, H. Xing, X.L. Wang, J. Sun, Z.Q. Cui, C.S. Yang, Metall. Mater. Trans. A 46, 3909 (2015)CrossRef
    [7]E.A. Marquis, D.C. Dunand, Scr. Mater. 47, 503 (2002)CrossRef
    [8]C.B. Fuller, D.N. Seidman, D.C. Dunand, Acta Mater. 51, 4803 (2003)CrossRef
    [9]M.E. Krug, D.C. Dunand, Acta Mater. 59, 5125 (2011)CrossRef
    [10]P. Zhang, Scr. Mater. 52, 277 (2005)CrossRef
    [11]D.V.V. Satyanarayana, G. Malakondaiah, D.S. Sarma, Mater. Sci. Eng. A 323, 119 (2002)CrossRef
    [12]W.G. Zhao, J.G. Wang, H.L. Zhao, D.M. Yao, Q.C. Jiang, Mater. Sci. Eng. A 515, 10 (2009)CrossRef
    [13]V.C. Nardone, J.R. Strife, Metall. Trans. A 18, 109 (1987)CrossRef
    [14]F.A. Mohamed, K.T. Park, E.J. Lavernia, Mater. Sci. Eng. A 150, 21 (1992)CrossRef
    [15]J. Čadek, H. Oikawa, V. Šustek, Mater. Sci. Eng. A 190, 9 (1995)CrossRef
    [16]R.S. Mishra, A.B. Pandey, A.K. Mukherjee, Mater. Sci. Eng. A 201, 205 (1995)CrossRef
    [17]K.T. Park, E.J. Lavernia, F.A. Mohamed, Acta Metall. Mater. 38, 2149 (1990)CrossRef
    [18]P.L. Threadgill, B. Wilshire, Creep Strength in Steel and High Temperature Alloys (The Metal Society, London, 1972), p. 8
    [19]J. Čadek, Creep in Metallic Materials (Elsevier, Amsterdam, 1988)
    [20]F.R.N. Nabarro, H.L. Villiers, The Physics of Creep: Creep and Creep-resistant Alloys (Taylor & Francis, London, 1995)
    [21]K.E. Knipling, D.C. Dunand, Scr. Mater. 59, 387 (2008)CrossRef
    [22]P. Ou, J. Sun, Z.Q. Cui, C.S. Yang, Trans. Mater. Heat Treat. 35, 85 (2014). (in Chinese)
    [23]Z.Y. Ma, S.C. Tjong, X.M. Meng, J. Mater. Res. 17, 2307 (2002)CrossRef
    [24]J. Weertman, J. Appl. Phys. 26, 1213 (1955)CrossRef
    [25]H.C. Yang, Dongfang Boiler 2, 13 (2003). (in Chinese)
    [26]F.R. Beckitt, T.M. Banks, T. Gladman, Creep Strength in Steel and High-Temperature Alloys (The Metals Society, London, 1974)
    [27]H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, London, 1982)
    [28]Y. Li, T.G. Langdon, Acta Mater. 45, 4797 (1997)CrossRef
    [29]M.A. Morris, Philos. Mag. A 65, 943 (1992)CrossRef
    [30]R. Kaibyshev, F. Musin, E. Avtokratova, E. Motohashi, Mater. Sci. Eng. A 392, 373 (2005)CrossRef
    [31]E. Nembach, Particle Strengthening of Metals and Alloys (Wiley, New York, 1997)
    [32]A.I. Karasevskii, V.V. Lubashenko, Phys. Status Solidi B 241, 1274 (2004)CrossRef
    [33]S.Y. Liem, G. Kresse, J.H.R. Clarke, Surf. Sci. 415, 194 (1998)CrossRef
    [34]X.M. Li, Y. Zou, Z.W. Zhang, Z.D. Zou, Mater. Trans. 51, 305 (2010)CrossRef
    [35]L. Ren, L. Nan, K. Yang, Mater. Des. 32, 2374 (2011)CrossRef
    [36]Q.F. Ma, R.S. Fang, L.C. Xiang, S. Guo, Handbook of Thermophysical Properties (China Agricultural Machine Press, Beijing, 1986). (in Chinese)
    [37]F.L. Yaggee, E.R. Gilbert, J.W. Styles, J. Less-Comm. Met. 19, 39 (1969)CrossRef
    [38]T. Kunimine, T. Aragaki, T. Fujii, S. Onaka, M. Kato, J. Mater. Sci. 46, 4302 (2011)CrossRef
    [39]J.W. Martin, Precipitation Hardening, 2nd edn. (Butterworth-Heinemann, Oxford, 1998), pp. 79–98CrossRef
    [40]D.B. Park, S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, W.S. Jung, Mater. Charact. 93, 52 (2014)CrossRef
    [41]D.B. Park, M.Y. Huh, W.S. Jung, J.Y. Suh, J.H. Shim, S.C. Lee, J. Alloys Compd. 574, 532 (2013)CrossRef
    [42]P. Ou, H. Xing, J. Sun, Metall. Mater. Trans. A 46, 1 (2015)CrossRef
  • 作者单位:Ping Ou (1) (2)
    Long Li (1)
    Xing-Fei Xie (1)
    Jian Sun (1)

    1. Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
    2. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
  • 刊物主题:Metallic Materials; Spectroscopy/Spectrometry; Organometallic Chemistry; Tribology, Corrosion and Coatings; Nanotechnology; Characterization and Evaluation of Materials;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2194-1289
文摘
Creep behavior of Super304H austenitic steel has been investigated at elevated temperatures of 923–973 K and at applied stress of 190–210 MPa. The results show that the apparent stress exponent and activation energy in the creep deformation range from 16.2 to 27.4 and from 602.1 to 769.3 kJ/mol at different temperatures, respectively. These high values imply the presence of a threshold stress due to an interaction between the dislocations and Cu-rich precipitates during creep deformation. The creep mechanism is associated with the dislocation climbing governed by the matrix lattice diffusion. The origin of the threshold stress is mainly attributed to the coherency strain induced in the matrix by Cu-rich precipitates. The theoretically estimated threshold stresses from Cu-rich precipitates agree reasonably with the experimental results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700