Fully degradable brush polymers with polycarbonate backbones and polylactide side chains
详细信息    查看全文
  • 作者:Jie Liu ; Weimin Ren ; Xiaobing Lu
  • 关键词:carbon dioxide ; polycarbonate ; terpolymerization ; brush polymer ; degradability
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:58
  • 期:6
  • 页码:999-1004
  • 全文大小:803 KB
  • 参考文献:1.Tsarevsky NV, Matyjaszewski K. “Green-atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev, 2007, 107: 2270-299View Article
    2.Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev, 2009, 109: 5437-527View Article
    3.Siegwart, Daniel J., Oh JK, Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci, 2012, 37: 18-7View Article
    4.Lee HI, Pietrasik J, Sheiko SS, Matyjaszewski K. Stimuli-responsive molecular brushes. Prog Polym Sci, 2010, 35: 24-4View Article
    5.Djalali R, Li SY, Schmidt M. Amphipolar core-shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules, 2002, 35: 4282-288View Article
    6.Du JZ, Tang LY, Song WJ, Shi Y Wang J. Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules, 2009, 10: 2169-174View Article
    7.Yuan WZ, Yuan JY, Zhang FB, Xie XM, Pan CY. Synthesis, characterization, crystalline morphologies, and hydrophilicity of brush copolymers with double crystallizable side chains. Macromolecules, 2007, 40: 9094-102View Article
    8.Xu X, Huang J. Synthesis and characterization of amphiphilic copolymer of linear poly(ethylene oxide) linked with [poly(styrene-co-2-hydroxyethyl methacrylate)graft-poly(epsilon-caprol actone)] using sequential controlled polymerization. J Polym Sci Part A: Polym Chem, 2006, 44: 467-76View Article
    9.Yu Y, Zou J, Yu L, Jo W, Li YK, Law WC, Cheng C. Functional polylactide-g-paclitaxel-poly(ethylene glycol) by azide-alkyne click chemistry. Macromolecules, 2011, 44: 4793-800View Article
    10.Lu XB, Ren WM, Wu GP. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc Chem Res, 2012, 45: 1721-735View Article
    11.Qin Y, Wang X. Progress of CO2 based copolymer, research, development and industrialization. Biotechnol J, 2010, 5: 1164-180View Article
    12.Zhang JF, Ren WM, Sun XK, Meng Y, Du BY, Zhang XH. Fully degradable and well-defined brush copolymers from combination of living CO2/epoxide copolymerization, thiol-ene click reaction and rop of epsilon-caprolactone. Macromolecules, 2011, 44: 9882-886View Article
    13.Kim JG, Coates GW. Synthesis and polymerization of norbornenyl-terminated multiblock poly(cyclohexene carbonate)s: a consecutive ring-opening polymerization route to multisegmented graft polycarbonates. Macromolecules, 2012, 45: 7878-883View Article
    14.Zhou Q, Gu L, Gao Y, Qin Y, Wang X, Wang F. Biodegradable CO2-based polycarbonates with rapid and reversible thermal response at body temperature. J Polym Sci Part A: Polym Chem, 2013, 51: 1893-898View Article
    15.Gu L, Qin Y, Gao Y, Wang X, Wang F. Hydrophilic CO2-based biodegradable polycarbonates: synthesis and rapid thermo-responsive behavior. J Polym Sci Part A: Polym Chem, 2013, 51: 2834-840View Article
    16.Zhang H, Grinstaff MW. Synthesis of atactic and isotactic poly(1,2-glycerol carbonate)s: degradable polymers for biomedical and pharmaceutical applications. J Am Chem Soc, 2013, 135: 6806-809View Article
    17.Geschwind J, Frey H. Poly(1,2-glycerol carbonate): a fundamental polymer structure synthesized from CO2 and glycidyl ethers. Macromolecules, 2013, 46: 3280-287View Article
    18.Liu Y, Wang M, Ren WM, He KK, Xu YC, Liu J, Lu XB. Stereospecific CO2 copolymers from 3,5-dioxaepoxides: crystallization and functionallization. Macromolecules, 2014, 47: 1269-276View Article
    19.Ren WM, Liu ZW, Wen YQ, Zhang R, Lu XB. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J Am Chem Soc, 2009, 131: 11509-1518View Article
    20.Ren WM, Zhang X, Liu Y, Li JF, Lu XB. Highly active, bifunctional Co(III)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules, 2010, 43: 1396-402View Article
  • 作者单位:Jie Liu (1)
    Weimin Ren (1)
    Xiaobing Lu (1)

    1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Novel, fully degradable brush polymers with polycarbonate backbones and polylactide side chains were prepared by a three-step reaction that included the terpolymerization of cyclohexene oxide (CHO) and benzyl glycidyl ether (BGE) with CO2, hydrogenation of the resultant terpolymers to afford the terpolymers with 1,2-glycerol carbonate units and the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) mediated ring-opening polymerization of lactide on the polycarbonate backbone. The brush copolymer bearing polylactide (PLA) chains from racemic lactide (rac-LA) has a single glass-transition temperature of 58.5 °C, whereas the copolymers with (L)-PLA side chains exhibited a melting enthalpy at 135.8 °C with ΔH m=25.04 J/g and were further shown by a WAXD study to be a typical semicrystalline polymer with sharp diffraction peaks at 2θ values of 16.7° and 18.9°.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700