Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate)
详细信息    查看全文
  • 作者:Yang-peng Wang ; Yan-jun Xiao ; Jin Duan ; Jing-hui Yang ; Yong Wang…
  • 关键词:Poly(l ; lactide)/poly(butylene succinate) ; Morphology ; Hydrolytic degradation
  • 刊名:Polymer Bulletin
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:73
  • 期:4
  • 页码:1067-1083
  • 全文大小:1,600 KB
  • 参考文献:1.Hoglund A, Hakkarainen M, Edlund U, Albertsson AC (2009) Surface modification changes the degradation process and degradation product pattern of polylactide. Langmuir 26:378–383CrossRef
    2.Tsuji H, Tezuka Y, Yamada K (2005) Alkaline and enzymatic degradation of l -lactide copolymers. II. Crystallized films of poly(l -lactide-co-d -lactide) and poly(l -lactide) with similar crystallinities. J Polym Sci Part B Polym Phys 43:1064–1075CrossRef
    3.Li SM, Tenon M, Garreau H, Braud C, Vert M (2000) Enzymatic degradation of stereocopolymers derived from l -, dl - and meso-lactides. Polym Degrad Stab 67:85–90CrossRef
    4.Liu L, Li SM, Garreau H, Vert M (2000) Selective enzymatic degradations of Poly(l -lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 1:350–359CrossRef
    5.Saha SK, Tsuji H (2006) Effects of molecular weight and small amounts of d -lactide units on hydrolytic degradation of poly(l -lactic acid)s. Polym Degrad Stab 91:1665–1673CrossRef
    6.Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef
    7.Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(d,l -lactic acid) with relative low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026CrossRef
    8.Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93:1450–1459CrossRef
    9.Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98:1006–1014CrossRef
    10.Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98:1089–1096CrossRef
    11.Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acid) in aqueous media Part 3 influence of the morphology of poly(l -lactic acid). J Mater Sci Mater Med 1:198–206CrossRef
    12.Vert M, Li SM, Garreau H (1994) Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acid. J Biomater Sci Polym Edn 6:639–649CrossRef
    13.Tsuji H, Ikada Y (1998) Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J Polym Sci Part A Polym Chem 36:59–66CrossRef
    14.Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(l -lactide). III. Effects of initial crystallininty on long-term in vitro hydrolysis of high molecular weight poly(l -lactide) film in phosphate-buffered solution. J Appl Polym Sci 77:1452–1464CrossRef
    15.Tsuji H, Nakahara K, Ikarashi K (2001) Poly(l -lactide), 8—high temperature hydrolysis of poly(l -lactide) films with different crystallinities and crystalline thicknesses in phosphate-buffered solution. Macromol Mater Eng 286:398–406CrossRef
    16.Andersson SR, Hakkarainen M, Inkinen S (2010) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 13:1212–1222CrossRef
    17.Chung S (1995) Chain-end scission in acid catalyzed hydrolysis polylactide in solution. J Control Release 34:9–15CrossRef
    18.Xu L, Crawford K, Gorman C (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44:4777–4782CrossRef
    19.Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny JM, Gamino G (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nano- composites. Polym Degrad Stab 96:2120–2129CrossRef
    20.Tsuji H, Nakahara K (2002) Poly(l -lactide). IX. Hydrolysis in acid media. J Appl Polym Sci 86:186–194CrossRef
    21.Tsuji H, Ikarashi K (2004) In vitro hydrolysis of poly(l -lactide) crystalline residues as extended- chain crystallites. III. Effect of pH and enzyme. Polym Degrad Stab 85:647–656CrossRef
    22.Tsuji H, Shimizu K, Sato Y (2012) Hydrolytic degradation of poly(l -lactic acid): combined effects of UV Treatment and crystallization. J Appl Polym Sci 125:2394–2406CrossRef
    23.Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53:58–65CrossRef
    24.Shieh YT, Twu YK, Su CC, Lin RH, Liu GL (2010) Crystallization Kinetics Study of Poly(l -lactic acid)/Carbon Nanotubes Nanocomposites. J Polym Sci Part B: Polym Phys 48:983–989CrossRef
    25.Shieh YT, Liu GL, Twu YK, Wang TL, Yang CH (2010) Effects of carbon nanotubes on dynamic mechanical property, thermal property, and crystal structure of poly(l -lactic acid). J Polym Sci Part B Polym Phys 48:145–152CrossRef
    26.Zhao YY, Qiu ZB, Yang WT (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l -lactide). J Phys Chem B 112:16461–16468CrossRef
    27.Zhao YY, Qiu ZB, Yang WT (2009) Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l -lactide). Compos Sci Technol 69:627–632CrossRef
    28.Xu HS, Dai XJJ, Lamb PR, Li ZM (2009) Poly(l -lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352CrossRef
    29.Suksut B, Deeprasertkul C (2011) Effect of nucleating agent on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19:288–296CrossRef
    30.Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef
    31.Wu DF, Wu L, Zhou WD, Sun YR, Zhang M (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48:479–489CrossRef
    32.Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical and electrical properties of poly(lactic acid). Polym Adv Technol 20:20631–20638CrossRef
    33.Ramontja J, Ray SS, Pillai SK, Luyt AS (2009) High-performance carbon nanotube-reinforced bioplastic. Macromol Mater Eng 294:839–846CrossRef
    34.Luo YB, Li WD, Wang XL, Xu DY, Wang YZ (2009) Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2. Acta Mater 57:3182–3191CrossRef
    35.Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY (2009) Polylactide/nano- and micro-scale silica composite films. I. Preparation and characterization. J Appl Polym Sci 112:1688–1694CrossRef
    36.Kim HS, Chae YS II, Kwon H, Yoon JS (2009) Thermal degradation behavior of multi-walled carbon nanotube-reinforced poly(l -lactide) nanocomposites. Polym Int 58:826–831CrossRef
    37.Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY (2009) Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci 112:3149–3156CrossRef
    38.Huang TC, Yeh JM, Yang JC (2010) Effect of silica size on the thermal, mechanical and biodegradable properties of polylactide/silica composite material prepared by melt blending. Adv Mater Res 123–125:1215–1218CrossRef
    39.Yan SF, Yin JB, Yang JY, Chen XS (2007) Structural characteristics and thermal properties of plasticized poly(l -lactide)-silica nanocomposites synthesized by sol-gel method. Mater Lett 61:2683–2686CrossRef
    40.Zhang J, Lou JZ, Ilias S, Krishnamachari P, Yan JZ (2008) Thermal properties of poly(lactic acid)/fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer 49:2381–2386CrossRef
    41.Luo YB, Wang XL, Wang YZ (2012) Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym Degrad Stab 97:721–728CrossRef
    42.Qu M, Tu HL, Amarante M, Song YQ, Zhu SS (2014) Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci 131:40287–40293
    43.Chen HM, Wang YP, Chen J, Yang JH, Zhang N, Huang T, Wang Y (2013) Hydrolytic degradation behavior of poly(l -lactide)/SiO2 composites. Polym Degrad Stab 98:2672–2679CrossRef
    44.Flahiff CM, Blackwell AS, Hollis JM, Feldman DS (1996) Analysis of a biodegradable composite for bone healing. J Biomed Mater Res 32:419–424CrossRef
    45.He LH, Sun J, Wang XX, Fan XH, Zhao QL, Cai LF, Song R, Ma Z, Huang W (2012) Unzipped multiwalled carbon nanotubes-incorporated poly(l -lactide) nanocomposites with enhanced interface and hydrolytic degradation. Mater Chem Phys 134:1059–1066CrossRef
    46.Chen HM, Feng CX, Zhang WB, Yang JH, Huang T, Zhang N, Wang Y (2013) Hydrolytic degradation behavior of poly(l -lactide)/carbon nanotubes nanocomposites. Polym Degrad Stab 98:198–208CrossRef
    47.de Paula EL, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d , l -lactide). Polym Degrad Stab 96:1631–1638CrossRef
    48.Paul MA, Delcourt C, Alexandre M, Degée Ph, Monteverde F, Dubois Ph (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87:535–542CrossRef
    49.Roy PK, Hakkarainen M, Albertsson AC (2010) Nanoclay effects on the degradation process and product patterns of polylactide. Polym Degrad Stab 97:1254–1260CrossRef
    50.Chen HM, Chen JW, Chen J, Yang JH, Huang T, Zhang N, Wang Y (2012) Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(l -lactide). Polym Degrad Stab 97:2273–2283CrossRef
    51.Eili M, Shameli K, Ibrahim NA, Yunus WMZW (2012) Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH Nanolayers. Int J Mol Sci 13:7938–7951CrossRef
    52.Shi YY, Du XC, Yang JH, Huang T, Zhang N, Wang Y, Yuan GP, Zhang CL (2014) Super toughened poly(l -lactide)/thermoplastic polyurethane blends achieved by adding dicumyl peroxide. Polym Plast Technol Eng 53:1344–1353CrossRef
    53.Li YJ, Shimizu H (2009) Improvement in toughness of poly(l -lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene (ABS): morphology and properties. Eur Polym J 42:738–746CrossRef
    54.Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415CrossRef
    55.Al-ltry Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914CrossRef
    56.Boufarguine M, Guinault A, Miquelard-Garnier G, Sollogoub C (2013) PLA/PHBV films with improved mechanical and gas barrier properties. Macromol Mater Eng 98:1065–1073
    57.Nameroff TJ, Garant RJ, Albert MB (2004) Adoption of green chemistry: an analysis based on US patents. Res Policy 33:959–974CrossRef
    58.Oyama HT, Tanaka Y, Kadosaka A (2009) Rapid controlled hydrolytic degradation of poly(l -lactic acid) by blending with poly(aspartic acid-co-l -lactide). Polym Degrad Stab 94:1419–1426CrossRef
    59.Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumita M (2007) Miscibility and hydrolytic degradation in alkaline solution of poly(l -lactide) and poly(p-vinyl phenol) blends. Polym Degrad Stab 92:1626–1631CrossRef
    60.Tsuji H, Muramatsu H (2001) Blends of aliphatic polyesters: V Non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l -lactide) and hydrophilic poly(vinyl alcohol). Polym Degrad Stab 71:403–413CrossRef
    61.Huang Y, Ge FJ, Zhou YL, Jiang L, Dan Y (2014) Hydrolytic behavior of poly(lactic acid) films with different architecture modified by poly(dodecafluorheptyl methylacrylate). Eur Polym J 59:189–199CrossRef
    62.Ojijo V, Ray SS, Sadiku R (2013) Toughening of Biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Appl Mater Inter 5:4266–4276CrossRef
    63.Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l -lactide) with poly(butylene succinate-co-l -lactate) and poly (butylene succinate). Polymer 47:3557–3564CrossRef
    64.Papageorgiou DG, Chrissafis K, Pavlidou E, Deliyanni EA, Papageorgiou GZ, Terzopoulou Z, Bikiaris DN (2014) Effect of nanofiller’s size and shape on the solid state microstructure and thermal properties of poly(butylene succinate) nanocomposites. Thermochim Acta 590:181–190CrossRef
    65.Aleman C, Lotz B, Puiggali J (2001) Crystal structure of the alpha-form of poly(l -lactide). Macromolecules 34:4795–4801CrossRef
    66.Sasaki S, Asakura T (2003) Helix distortion and crystal structure of the alpha-form of poly(l -lactide). Macromolecules 36:8385–8390CrossRef
    67.Wang RY, Wang SF, Zhang Y, Wan CY, Ma PM (2009) Toughening modification of PLLA/PBS blends via In Situ compatibilization. Polym Eng Sci 49:26–33CrossRef
    68.Cho K, Lee J, Kwon K (2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 79:1025–1033CrossRef
    69.Tsuji H, Ikarashi K, Fukuda N (2004) Poly(l -lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(l -lactide) films in phosphate-buffered solution. Polym Degrad Stab 84:515–523CrossRef
  • 作者单位:Yang-peng Wang (1)
    Yan-jun Xiao (1)
    Jin Duan (1)
    Jing-hui Yang (1)
    Yong Wang (1)
    Chao-liang Zhang (2)

    1. Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
    2. State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Characterization and Evaluation Materials
    Soft Matter and Complex Fluids
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-2449
文摘
In this work, different contents (10–40 wt%) of poly(butylene succinate) (PBS) were introduced into poly(lactic acid) (PLA) through the common melt compounding processing. The microstructure and morphologies of the blends were investigated through differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscope (SEM). The results showed that the presence of PBS neither induces the crystallization nor enhances the crystallinity of PLA matrix, and completely amorphous PLA was obtained in all samples. PBS exhibited dispersed particles in the PLA matrix and there were clear gaps between components. The hydrophilicity of samples was evaluated by measuring contact angles. The results demonstrated that adding PBS improved the hydrophilicity of samples. The hydrolytic degradation measurements were carried out at 37 °C in alkaline solution. The results showed that the presence of PBS accelerated the hydrolytic degradation of PLA matrix. Specifically, the higher the content of PBS was, the bigger the weight loss per unit area of sample was. The hydrolytic degradation mechanism was then analyzed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700