Construction and Quantitative Validation of Chicken CXCR4 Expression Reporter
详细信息    查看全文
  • 作者:Masoumeh Es-haghi ; Mohammadreza Bassami ; Hesam Dehghani
  • 关键词:Hematopoietic lymphoblast cell line (MSB1) ; Promoter of CXCR4 gene ; Gallus gallus ; Promoter validation
  • 刊名:Molecular Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:58
  • 期:3
  • 页码:202-211
  • 全文大小:3,563 KB
  • 参考文献:1.Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., et al. (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 382(6594), 829–833.CrossRef
    2.Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, NY), 283(5403), 845–848.CrossRef
    3.Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.CrossRef
    4.Kioi, M., Vogel, H., Schultz, G., Hoffman, R. M., Harsh, G. R., & Brown, J. M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of Clinical Investigation, 120(3), 694–705.CrossRef
    5.Fareh, M., Turchi, L., Virolle, V., Debruyne, D., Almairac, F., de-la-Forest Divonne, S., et al. (2012). The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell death and differentiation, 19(2), 232–244.CrossRef
    6.Carpenter, R. L., & Lo, H. W. (2012). Hedgehog pathway and GLI1 isoforms in human cancer. Discovery Medicine, 13(69), 105–113.
    7.Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Seminars in Cancer Biology, 14(3), 171–179.CrossRef
    8.Zlotnik, A. (2006). Chemokines and cancer. International Journal of Cancer, 119(9), 2026–2029.CrossRef
    9.Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell, 111(5), 647–659.CrossRef
    10.Molyneaux, K. A., Zinszner, H., Kunwar, P. S., Schaible, K., Stebler, J., Sunshine, M. J., et al. (2003). The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development, 130(18), 4279–4286.CrossRef
    11.Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., et al. (2004). Primordial germ cell migration in the chicken and mouse embryo: the role of the chemokine SDF-1/CXCL12. Development Biology, 272(2), 351–361.CrossRef
    12.Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of biological Chemistry, 273(8), 4754–4760.CrossRef
    13.Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas. Molecular Cancer Research: MCR, 8(1), 1–14.CrossRef
    14.Moriuchi, M., Moriuchi, H., Turner, W., & Fauci, A. S. (1997). Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. Journal of Immunology, 159(9), 4322–4329.
    15.Mukherjee, D., & Zhao, J. (2013). The Role of chemokine receptor CXCR4 in breast cancer metastasis. American journal of cancer Research, 3(1), 46–57.
    16.Al-Souhibani, N., Al-Ghamdi, M., Al-Ahmadi, W., & Khabar, K. S. (2014). Posttranscriptional control of the chemokine receptor CXCR4 expression in cancer cells. Carcinogenesis, 35(9), 1983–1992.CrossRef
    17.Busillo, J. M., & Benovic, J. L. (2007). Regulation of CXCR4 signaling. Biochimica et Biophysica Acta, 1768(4), 952–963.CrossRef
    18.Haviv, Y. S., van Houdt, W. J., Lu, B., Curiel, D. T., & Zhu, Z. B. (2004). Transcriptional targeting in renal cancer cell lines via the human CXCR4 promoter. Molecular Cancer Therapeutics, 3(6), 687–691.
    19.Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. The Journal of Experimental Medicine, 198(9), 1391–1402.CrossRef
    20.Mehta, S. A., Christopherson, K. W., Bhat-Nakshatri, P., Goulet, R. J, Jr, Broxmeyer, H. E., Kopelovich, L., et al. (2007). Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene, 26(23), 3329–3337.CrossRef
    21.Gu, S., Chen, L., Hong, Q., Yan, T., Zhuang, Z., Wang, Q., et al. (2011). PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells. Acta Biochimica et Biophysica Sinica, 43(10), 771–778.CrossRef
    22.Zhu, Z. B., Makhija, S. K., Lu, B., Wang, M., Kaliberova, L., Liu, B., et al. (2004). Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Therapy, 11(7), 645–648.CrossRef
    23.Khanna, C., & Hunter, K. (2005). Modeling metastasis in vivo. Carcinogenesis, 26(3), 513–523.CrossRef
    24.Sato, Y. (2013). Dorsal aorta formation: separate origins, lateral-to-medial migration, and remodeling. Development, Growth and Differentiation, 55(1), 113–129.CrossRef
    25.Sakakibara, A., & Horwitz, A. F. (2006). Mechanism of polarized protrusion formation on neuronal precursors migrating in the developing chicken cerebellum. Journal of Cell Science, 119(Pt 17), 3583–3592.CrossRef
    26.Stern, C. D. (2004). The chicken embryo–past, present and future as a model system in developmental biology. Mechanisms of Development, 121(9), 1011–1013.CrossRef
    27.Vergara, M. N., & Canto-Soler, M. V. (2012). Rediscovering the chicken embryo as a model to study retinal development. Neural Development, 7, 22.CrossRef
    28.Zijlstra, A., Mellor, R., Panzarella, G., Aimes, R. T., Hooper, J. D., Marchenko, N. D., et al. (2002). A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Research, 62(23), 7083–7092.
    29.Eliceiri, B. P., Klemke, R., Stromblad, S., & Cheresh, D. A. (1998). Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. The Journal of Cell Biology, 140(5), 1255–1263.CrossRef
    30.Zhang, W., Wu, Y., Yan, Q., Ma, F., Shi, X., Zhao, Y., et al. (2014). Deferoxamine enhances cell migration and invasion through promotion of HIF-1alpha expression and epithelial-mesenchymal transition in colorectal cancer. Oncology Reports, 31(1), 111–116.
    31.Ducrest, A. L., Amacker, M., Lingner, J., & Nabholz, M. (2002). Detection of promoter activity by flow cytometric analysis of GFP reporter expression. Nucleic Acids Research, 30(14), e65.CrossRef
    32.Soboleski, M. R., Oaks, J., & Halford, W. P. (2005). Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19(3), 440–442.
    33.Parcells, M. S., Dienglewicz, R. L., Anderson, A. S., & Morgan, R. W. (1999). Recombinant Marek’s disease virus (MDV)-derived lymphoblastoid cell lines: regulation of a marker gene within the context of the MDV genome. Journal of Virology, 73(2), 1362–1373.
    34.Ross, L. J. N., Bumstead, J., & Powell, P. C. (1982). Susceptibility of Marek’s disease lymphoblastoid cell lines to infection with influenza and pseudorabies viruses and the protective effect of immunization with influenza virus-infected lymphoblastoid cells. Archives of Virology, 74(2–3), 101–110.CrossRef
    35.Higashihara, T., Kunihiro, K., Yamaki, T., Okada, I., Kodama, H., Izawa, H., et al. (1984). Characterization of transplantable subline MDCC-MSB1-Clo. 18 derived from MDCC-MSB1. The. Japanese Journal of Veterinary Research, 32(3), 155–163.
    36.Bustin, S. A., Gyselman, V. G., Williams, N. S., & Dorudi, S. (1999). Detection of cytokeratins 19/20 and guanylyl cyclase C in peripheral blood of colorectal cancer patients. British Journal of Cancer, 79(11–12), 1813–1820.CrossRef
    37.Maroni, P., Bendinelli, P., Matteucci, E., & Desiderio, M. A. (2007). HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis, 28(2), 267–279.CrossRef
    38.Wang, F., Li, Y., Zhou, J., Xu, J., Peng, C., Ye, F., et al. (2011). miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. The American Journal of Pathology, 179(5), 2580–2588.CrossRef
    39.Chou, C.-W., & Chen, C.-C. (2008). HDAC inhibition upregulates the expression of angiostatic ADAMTS1. FEBS Letters, 582(29), 4059–4065.CrossRef
    40.Guo, M., Cai, C., Zhao, G., Qiu, X., Zhao, H., Ma, Q., et al. (2014). Hypoxia promotes migration and induces CXCR4 expression via HIF-1alpha activation in human osteosarcoma. PLoS ONE, 9(3), e90518.CrossRef
  • 作者单位:Masoumeh Es-haghi (1)
    Mohammadreza Bassami (1)
    Hesam Dehghani (1) (2)

    1. Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
    2. Embryonic and Stem Cell Biology and Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
  • 刊物主题:Biotechnology; Biochemistry, general; Cell Biology; Protein Science; Biological Techniques; Human Genetics;
  • 出版者:Springer US
  • ISSN:1559-0305
文摘
Site directional migration is an important biological event and an essential behavior for latent migratory cells. A migratory cell maintains its motility, survival, and proliferation abilities by a network of signaling pathways where CXCR4/SDF signaling route plays crucial role for directed homing of a polarized cell. The chicken embryo due to its specific vasculature modality has been used as a valuable model for organogenesis, migration, cancer, and metastasis. In this research, the regulatory regions of chicken CXCR4 gene have been characterized in a chicken hematopoietic lymphoblast cell line (MSB1). A region extending from −2000 bp upstream of CXCR4 gene to +68 after its transcriptional start site, in addition to two other mutant fragments were constructed and cloned in a promoter-less reporter vector. Promoter activity was analyzed by quantitative real-time RT-PCR and flow cytometry techniques. Our findings show that the full sequence from −2000 to +68 bp of CXCR4 regulatory region is required for maximum promoter functionality, while the mutant CXCR4 promoter fragments show a partial promoter activity. The chicken CXCR4 promoter validated in this study could be used for characterization of directed migratory cells in chicken development and disease models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700