Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress
详细信息    查看全文
  • 作者:Jing Shi ; Meiqin Liu ; Yuzhen Chen ; Jinyu Wang ; Cunfu Lu
  • 关键词:Ammopiptanthus mongolicus ; AmCIP ; Dehydrin ; Cryoprotective function
  • 刊名:Plant Growth Regulation
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:79
  • 期:1
  • 页码:71-80
  • 全文大小:1,584 KB
  • 参考文献:Bradford NM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef PubMed
    Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007) Functional characterization of DHN5, a dehydrin showing a differential phosphorylation patternin two in Tunisian durum wheat (Triticum durumDesf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28CrossRef
    Chang SJ, Puryear J, Cainey J (1993) A simple and efficient method for RNA isolation from pine trees. Plant Mol Biol Rep 11:113–116CrossRef
    Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296CrossRef
    Danyluk J, Perron A, Houde M, LiminA Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638CrossRef PubMed PubMedCentral
    Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437CrossRef PubMed
    Eriksson SK, Kutzer M, Procek J, Gröbner G, Harrysona P (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23:2391–2404CrossRef PubMed PubMedCentral
    Falavigna VS, Miotto YE, Porto DD, Anzanello R, Santos HP, Fialho FB, Margis-Pinheiro M, Pasquali G G, Revers LF (2015) Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. Physiol Plant. doi:10.​1111/​ppl.​12338
    Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. Mol Biol 338:1015–1026CrossRef
    Giarolaa V, Challabathula D, Bartels D (2015) Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. Plant Sci 236:103–115CrossRef
    Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576CrossRef PubMed PubMedCentral
    Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthusmongolicus. BMC Plant Biol 10:18CrossRef PubMed PubMedCentral
    Hanin M, Brini F, Ebel C, Toda Y, Takeda S (2011) Plant dehydrins and stresstolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509CrossRef PubMed PubMedCentral
    Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298PubMed
    He S, Tan L, Hu Z, Chen G, Wang G, Hu T (2011) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryzasativa L. Mol Genet Genomics 287:39–54CrossRef PubMed
    Heberle-Bors L, Charvat B, Thopson D, Schernthaner JP, Barta A, Matzke AJM (1988) Genetic analysis of T-DNA insertions into the tobacco genome. Plant Cell Rep 7:571–574CrossRef PubMed
    House M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387CrossRef
    Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50CrossRef PubMed PubMedCentral
    Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydration gene cosegregates with chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244CrossRef PubMed PubMedCentral
    Ismail FA, Nitsch LM, Wolters-Arts MM, Mariani C, Derksen JW (2010) Semi-viviparous embryo development and dehydrin expression in the mangrove Rhizophoramucronata Lam. Sex Plant Reprod 23(2):95–103CrossRef PubMed PubMedCentral
    Kalemba EM, Bagniewska-Zadworna A, Ratajczak E (2015) Multiple subcellular localizations of dehydrin-like proteins in the embryonic axes of common beech (Fagus sylvatica L.) seeds during maturation and dry storage. J Plant Growth Regul 34:137–149CrossRef
    Karlson DT, Fujino T, Kimura S, Baba K, Itoh T, Ashworth EN (2003) Novel plasmodesmata association of dehydrin-like proteins in cold- acclimated Red-osier dogwood (Cornussericea). Tree Physiol 23(11):759–767CrossRef PubMed
    Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51(4):601–617CrossRef
    Kosová K, Holková L, Prásil IT, Prásilová P, Bradácová M, Vítámvás P, Capková V (2008) Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeumvulgare). J Plant Physiol 165(11):1142–1151CrossRef PubMed
    Kosová K, Tom Prásil I, Prásilová P, Vítámvás P, Chrpová J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeumvulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation. J Plant Physiol 167(5):343–350CrossRef PubMed
    Kosová K, Vítámvás P, Prášil IT (2011) Expression of dehydrins in wheat and barley under different temperatures. Plant Sci 180:46–52CrossRef PubMed
    Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183:1103–1108CrossRef PubMed
    Liu M, Lu C, Shen X, Yin W (2006) Characterization and function analysis of a cold-induced AmCIP geneencoding a dehydrin-like protein in Ammopiptanthus mongolicus. DNA Seq 17:342–349CrossRef PubMed
    Liu R, Liu M, Liu J, Chen Y, Chen Y, Lu C (2010) Heterologous expression of an Ammopiptanthus mongolicus late embryogenesis abundant protein gene (AmLEA) enhances Escherichia coli viability under cold and heat stress. Plant Growth Regul 60:163–168CrossRef
    Liu M, Shi J, Lu C (2013) Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. BMC Plant Biol 13:88CrossRef PubMed PubMedCentral
    Liu H, Yu CY, Li HX, Ouyang B, Wang TT, Zhang JH, Wang X, Ye ZB (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211CrossRef PubMed
    Mingeot D, Dauchot N, Van Cutsem P, Watillon B (2009) Characterization of two cold induced dehydrin genes from Cichorium intybus L. Mol Biol Rep 36:1995–2001CrossRef PubMed
    Ochoa-Alfaro AE, Rodríguez-Kessler M, Pérez-Morales MB, Delgado-Sánchez P, Cuevas-Velazquez CL, Gómez-Anduro G, Jiménez-Bremont JF (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntiastreptacantha cDNA library. Planta 235:565–578CrossRef PubMed
    Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580:2041–2045CrossRef PubMed
    Peng Y, Reyesb JL, Weia H, Yangc Y, Karlsonc D, Covarrubiash AA, Krebsd SL, Fessehaiee A, Aroraa R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597CrossRef PubMed
    Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 154:743–753CrossRef
    Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 188:791–807CrossRef
    Rémus-Borel W, Castonguay Y, Cloutier J, Michaud R, Bertrand A, Desgagnés R, Laberge S (2010) Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). Theor Appl Genet 120(6):1163–1174CrossRef PubMed
    Reyes JL, Campos F, Wei HUI, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant, cell Environ 31(12):1781–1790CrossRef
    Rinne PL, Kaikuranta PL, van der Plas LH, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209(4):377–388CrossRef PubMed
    Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221CrossRef PubMed
    Sukumaran NP, Weiser CJ (1972) An excised leaflet test for evaluating potato frost tolerance. Hort Sci 7:467–468
    Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffth M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunuspersica). Physiol Plant 105:600–608CrossRef
    Yang Y, Sun X, Yang S, Li X, Yang Y (2014) Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea. Biochem Biophys Res Commun 448:145–150CrossRef PubMed
  • 作者单位:Jing Shi (1)
    Meiqin Liu (1)
    Yuzhen Chen (1)
    Jinyu Wang (2)
    Cunfu Lu (1)

    1. College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
    2. Analysis and Testing Center, Tsinghua University, Beijing, 100083, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5087
文摘
Ammopiptanthus mongolicus is the only evergreen broadleaf shrub endemic to the Alashan Desert in northwestern China. The plants can survive temperatures of −30 °C or less in winter. A dehydrin-like protein gene, AmCIP, cloned from a cold-acclimated A. mongolicus seedling was transformed into E. coli. The transgenic strains exhibited enhanced freezing tolerance compared with non-transformed host cells. The recombinant AmCIP remained soluble pre- and post-boiling for 10 min, and protected activity of lactate dehydrogenase during two freeze–thaw cycles more effectively than bovine serum albumin, a protein with a proven cryoprotective effect. Expression of AmCIP in transgenic tobacco increased cold tolerance during seed germination and seedling growth. The YFP-AmCIP fusion protein was localized in the cytoplasm and nucleus in onion inner epidermal cells, indicating that AmCIP might function both in the cytoplasm and nucleus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700