Systematic analysis of intracellular mechanisms of propanol production in the engineered Thermobifida fusca B6 strain
详细信息    查看全文
  • 作者:Yu Deng ; Adam B. Fisher ; Stephen S. Fong
  • 关键词:Actinobacterium ; 1 ; Propanol ; Transcriptomics ; Synthetic pathway
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:99
  • 期:19
  • 页码:8089-8100
  • 全文大小:1,122 KB
  • 参考文献:Ahn HJ, Lynd LR (1996) Cellulose degradation and ethanol production by thermophilic bacteria using mineral growth medium. Appl Biochem Biotechnol 57鈥?8:599鈥?04CrossRef PubMed
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288鈥?294. doi:10.鈥?128/鈥婣em.鈥?0646-11 PubMed Central CrossRef PubMed
    Deng Y, Fong SS (2010a) Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl Environ Microbiol 76(7):2098鈥?106. doi:10.鈥?128/鈥婣em.鈥?2626-09 PubMed Central CrossRef PubMed
    Deng Y, Fong SS (2010b) Influence of culture aeration on the cellulase activity of Thermobifida fusca. Appl Microbiol Biotechnol 85(4):965鈥?74. doi:10.鈥?007/鈥媠00253-009-2155-9 CrossRef PubMed
    Deng Y, Fong SS (2011a) Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem 286(46):39958鈥?6. doi:10.鈥?074/鈥媕bc.鈥婱111.鈥?39616 PubMed Central CrossRef PubMed
    Deng Y, Fong SS (2011b) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13(5):570鈥?77. doi:10.鈥?016/鈥媕.鈥媦mben.鈥?011.鈥?6.鈥?07 CrossRef PubMed
    Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083鈥?087. doi:10.鈥?002/鈥婤it.鈥?4370 CrossRef PubMed
    Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189(6):2477鈥?486. doi:10.鈥?128/鈥婮b.鈥?1899-06 PubMed Central CrossRef PubMed
    Lynd LR, Grethlein HE (1987) Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol Bioeng 29(1):92鈥?00. doi:10.鈥?002/鈥媌it.鈥?60290114 CrossRef PubMed
    Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55(12):3131鈥?PubMed Central PubMed
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev MMBR 66(3):506鈥?77CrossRef PubMed
    Merklein K, Fong SS, Deng Y (2014) Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochem Eng J 90:239鈥?44. doi:10.鈥?016/鈥媕.鈥媌ej.鈥?014.鈥?6.鈥?12 CrossRef
    Schwartz H, Radler F (1988) Formation of L(-)Malate by Saccharomyces Cerevisiae during Fermentation. Appl Microbiol Biotechnol 27(5-6):553鈥?60CrossRef
    Spiridonov NA, Wilson DB (1999) Characterization and cloning of celR, a transcriptional regulator of cellulase genes from Thermomonospora fusca. J Biol Chem 274(19):13127鈥?2CrossRef PubMed
    Spiridonov NA, Wilson DB (2000) A celR mutation affecting transcription of cellulase genes in Thermobifida fusca. J Bacteriol 182(1):252鈥?55PubMed Central CrossRef PubMed
    Vanee N, Brooks JP, Spicer V, Shamshurin D, Krokhin O, Wilkins JA, Deng Y, Fong SS (2014) Proteomics-based metabolic modeling and characterization of the cellulolytic bacterium Thermobifida fusca. BMC Syst Biol 8(1):86. doi:10.鈥?186/鈥媠12918-014-0086-2 PubMed Central CrossRef PubMed
    Watson DL, Wilson DB, Walker LP (2002) Synergism in binary mixtures of Thermobifida fusca cellulases Cel6B, Cel9A, and Cel5A on BMCC and Avicel. Appl Biochem Biotechnol 101(2):97鈥?11. doi:10.鈥?385/鈥婣bab:鈥?01:鈥?:鈥?97 CrossRef PubMed
    Wei H, Fu Y, Magnusson L, Baker JO, Maness PC, Xu Q, Yang S, Bowersox A, Bogorad I, Wang W, Tucker MP, Himmel ME, Ding SY (2014) Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Front Microbiol 5:142. doi:10.鈥?389/鈥媐micb.鈥?014.鈥?0142 PubMed Central CrossRef PubMed
    Wilson DB (2004) Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4(2):72鈥?2. doi:10.鈥?002/鈥婽cr.鈥?0002 CrossRef PubMed
    Yan PA, Su LQ, Chen J, Wu J (2013) Heterologous expression and biochemical characterization of an endo-1,4-glucanase from Thermobifida fusca. Biotechnol Appl Biochem 60(3):348鈥?55. doi:10.鈥?002/鈥婤ab.鈥?097 CrossRef PubMed
    Zhang S, Irwin DC, Wilson DB (2000) Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267(11):3101鈥?115. doi:10.鈥?046/鈥媕.鈥?432-1327.鈥?000.鈥?1315.鈥媥 CrossRef PubMed
    Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77(2):427鈥?4. doi:10.鈥?128/鈥婣EM.鈥?1971-10 PubMed Central CrossRef PubMed
  • 作者单位:Yu Deng (1)
    Adam B. Fisher (2)
    Stephen S. Fong (2)

    1. National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
    2. Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Thermobifida fusca is a moderately thermophilic actinobacterium naturally capable of utilizing lignocellulosic biomass. The B6 strain of T. fusca was previously engineered to produce 1-propanol directly on lignocellulosic biomass by expressing a bifunctional butyraldehyde/alcohol dehydrogenase (adhE2). To characterize the intracellular mechanisms related to the accumulation of 1-propanol, the engineered B6 and wild-type (WT) strains were systematically compared by analysis of the transcriptome and intracellular metabolome during exponential growth on glucose, cellobiose, and Avicel. Of the 18 known cellulases in T. fusca, 10 cellulase genes were transcriptionally expressed on all three substrates along with three hemicellulases. Transcriptomic analysis of cellodextrin and cellulose transport revealed that Tfu_0936 (multiple sugar transport system permease) was the key enzyme regulating the uptake of sugars in T. fusca. For both WT and B6 strains, it was found that growth in oxygen-limited conditions resulted in a blocked tricarboxylic acid (TCA) cycle caused by repressed expression of Tfu_1925 (aconitate hydratase). Further, the transcriptome suggested a pathway for synthesizing succinyl-CoA: oxaloacetate to malate (by malate dehydrogenase), malate to fumarate (by fumarate hydratase), and fumarate to succinate (by succinate dehydrogenase/fumarate reductase) which was ultimately converted to succinyl-CoA by succinyl-CoA synthetase. Both the transcriptome and the intracellular metabolome confirmed that 1-propanol was produced through succinyl-CoA, L-methylmalonyl-CoA, D-methylmalonyl-CoA, and propionyl-CoA in the B6 strain. Keywords Actinobacterium 1-Propanol Transcriptomics Synthetic pathway

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700