Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw
详细信息    查看全文
  • 作者:Annick Turbe-Doan (1) (2)
    Yonathan Arfi (1) (2)
    Eric Record (1) (2)
    Isabel Estrada-Alvarado (3)
    Anthony Levasseur (1) (2)
  • 关键词:Cellobiose dehydrogenase ; Haemoflavoprotein ; GMC oxidoreductase ; Aspergillus niger ; Trichoderma reesei ; Artificial secretome ; Plant cell wall degradation ; Biofuels
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:97
  • 期:11
  • 页码:4873-4885
  • 全文大小:544KB
  • 参考文献:1. Abdelkafi S, Ogata H, Barouh N, Fouquet B, Lebrun R, Pina M, Scheirlinckx F, Villeneuve P, Carrière F (2009) Identification and biochemical characterization of a GDSL-motif carboxylester hydrolase from / Carica papaya latex. Biochim Biophys Acta 1791:1048-056 CrossRef
    2. Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273-06 CrossRef
    3. Bao W, Renganathan V (1992) Cellobiose oxidase of / Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77-0 CrossRef
    4. Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890-92 CrossRef
    5. Calmels TP, Martin F, Durand H, Tiraby G (1991) Proteolytic events in the processing of secreted proteins in fungi. J Biotechnol 17:51-6 CrossRef
    6. Cannella D, Hsieh CW, Felby C, J?rgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26 CrossRef
    7. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238 CrossRef
    8. Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in / Aspergillus niger. Appl Environ Microbiol 66:3016-023 CrossRef
    9. Contreras R, Carrez D, Kinghorn JR, van den Hondel CA, Fiers W (1991) Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by / Aspergillus nidulans and secretion of mature interleukin-6. Biotechnology (New York) 9:378-81 CrossRef
    10. Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) / Podospora anserina hemicellulases potentiate the / Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237-46 CrossRef
    11. Desriani, Desriani S, Sode K (2010a) Amino acid substitution at the substrate-binding subsite alters the specificity of the / Phanerochaete chrysosporium cellobiose dehydrogenase. Biochem Biophys Res Commun 391:1246-250 CrossRef
    12. Desriani, Ferri S, Sode K (2010b) Functional expression of / Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in / Escherichia coli. Biotechnol Lett 32:855-59 CrossRef
    13. Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by / Trametes versicolor. Enzyme Microb Technol 29:478-89 CrossRef
    14. Durand H, Baron M, Calmels T, Tiraby G (1988a) Classical and molecular genetics applied to / Trichoderma reesei for the selection of improved cellulolytic industrial strains. FEMS Symp 43:135-52
    15. Durand H, Clanet M, Tiraby G (1988b) Genetic improvement of / Trichoderma reesei for large scale cellulase production. Enzyme Microbiol Technol 10:341-46 CrossRef
    16. Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus / Podospora anserina. Genome Biol 9:R77 CrossRef
    17. Fang JM, Fowler P, Tomkinson J, Hill CAS (2002) Preparation and characterisation of methylated hemicelluloses from wheat straw. Carbohyd Polym 47:285-93 CrossRef
    18. Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pagès S, Perret S (2009) The cellulosomes from / Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 276:3076-086 CrossRef
    19. Gordon CL, Archer DB, Jeenes DJ, Doonan JH, Wells B, Trinci APJ, Robson GD (2000) A glucoamylase:GFP gene fusion to study protein secretion by individual hyphae of / Aspergillus niger. J Microbiol Methods 42:39-8 CrossRef
    20. Gouka RJ, Punt PJ, van den Hondel CA (1997) Glucoamylase gene fusions alleviate limitations for protein production in / Aspergillus awamori at the transcriptional and (post)translational levels. Appl Environ Microbiol 63:488-97
    21. Hallberg BM, Bergfors T, B?ckbro K, Pettersson G, Henriksson G, Divne C (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8:79-8 CrossRef
    22. Hallberg BM, Henriksson G, Pettersson G, Divne C (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol 315:421-34 CrossRef
    23. Harreither W, Sygmund C, Dünhofen E, Vicu?a R, Haltrich D, Ludwig R (2009) Cellobiose dehydrogenase from the ligninolytic basidiomycete / Ceriporiopsis subvermispora. Appl Environ Microbiol 75:2750-757 CrossRef
    24. Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77:1804-815 CrossRef
    25. Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase from / Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem 196:101-06 CrossRef
    26. Henriksson G, Salumets A, Divne C, Pettersson G (1997) Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem J 324:833-38
    27. Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G (1998) Substrate specificity of cellobiose dehydrogenase from / Phanerochaete chrysosporium. Biochim Biophys Acta 1383:48-4 CrossRef
    28. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93-13 CrossRef
    29. Kremer SM, Wood PM (1992) Production of Fenton’s reagent by cellobiose oxidase from cellulolytic cultures of / Phanerochaete chrysosporium. Eur J Biochem 208:807-14 CrossRef
    30. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007-015 CrossRef
    31. Lequart C, Nuzillard JM, Kurek B, Debeire P (1999) Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carbohyd Res 319:102-11 CrossRef
    32. Levasseur A, Pagès S, Fierobe HP, Navarro D, Punt P, Bela?ch JP, Asther M, Record E (2004) Design and production in / Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl Environ Microbiol 70:6984-991 CrossRef
    33. Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45:638-45 CrossRef
    34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-75
    35. Ludwig R, Salamon A, Varga J, Zámocky M, Peterbauer CK, Kulbe KD, Haltrich D (2004) Characterisation of cellobiose dehydrogenases from the white-rot fungi / Trametes pubescens and / Trametes villosa. Appl Microbiol Biotechnol 64:213-22 CrossRef
    36. Mason MG, Wilson MT, Ball A, Nicholls P (2002) Oxygen reduction by cellobiose oxidoreductase: the role of the haem group. FEBS Lett 518:29-2 CrossRef
    37. Mason MG, Nicholls P, Divne C, Hallberg BM, Henriksson G, Wilson MT (2003) The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim Biophys Acta, Bioenerg 1604:47-4 CrossRef
    38. Morpeth FF (1985) Some properties of cellobiose oxidase from the white rot fungus / Sporotrichum pulverulentum. Biochem J 228:557-64
    39. Mowat CG, Gazur B, Campbell LP, Chapman SK (2010) Flavin-containing heme enzymes. Arch Biochem Biophys 493:37-2 CrossRef
    40. Navarro D, Couturier M, Damasceno G, da Silva G, Berrin JG, Rouau X, Asther M, Bignon C (2010) Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microb Cell Fact 9:58 CrossRef
    41. Nutt A, Salumets A, Henriksson G, Sild V, Johansson G (1997) Conversion of O2 species by cellobiose dehydrogenase (cellobiose oxidase) and glucose oxidase a comparison. Biotechnol Lett 19:379-84 CrossRef
    42. Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of / Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65-2 CrossRef
    43. Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by / Neurospora crassa. ACS Chem Biol 6:1399-406 CrossRef
    44. Porath J, Carlsson OI, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598-99 CrossRef
    45. Punt PJ, van den Hondel CA (1992) Transformation of filamentous fungi based on hygromycin B and phleomycine resistance markers. Methods Enzymol 216:447-57 CrossRef
    46. Punt PJ, Drint-Kuijvenhoven A, Lokman BC, Spencer JA, Jeenes D, Archer DA, van den Hondel CAMJJ (2003) The role of the / Aspergillus niger furin-type protease gene in processing of fungal proproteins and fusion proteins. Evidence for alternative processing of recombinant (fusion-) proteins. J Biotechnol 106:23-2 CrossRef
    47. Punt PJ, Levasseur A, Visser H, Wery J, Record E (2011) Fungal protein production: design and production of chimeric proteins. Annu Rev Microbiol 65:57-9 CrossRef
    48. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185-95
    49. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283-95 CrossRef
    50. Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canb?ck B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigó R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kües U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma LJ, Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, Velagapudi R, Vision TJ, Zeng Q, Zolan ME, Pukkila PJ (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom / Coprinopsis cinerea ( / Coprinus cinereus). Proc Natl Acad Sci U S A 107:11889-1894 CrossRef
    51. Tabka MG, Herpo?l-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897-02 CrossRef
    52. Tuomela M, Hatakka A, Raiskila S, Vikman M, It?vaara M (2001) Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55:492-99, Erratum in: Appl Microbiol Biotechnol 57:441 CrossRef
    53. van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwells PH, van den Hondel CA (1987) Development of a homologous transformation system for / Aspergillus niger based on the / pyrG gene. Mol Gen Genet 206:71-5 CrossRef
    54. Yoshida M, Ohira T, Igarashi K, Nagasawa H, Aida K, Hallberg BM, Divne C, Nishino T, Samejima M (2001) Production and characterization of recombinant / Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast / Pichia pastoris. Biosci Biotechnol Biochem 65:2050-057 CrossRef
    55. Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase - a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protoc Pept Sci 7:255-80 CrossRef
  • 作者单位:Annick Turbe-Doan (1) (2)
    Yonathan Arfi (1) (2)
    Eric Record (1) (2)
    Isabel Estrada-Alvarado (3)
    Anthony Levasseur (1) (2)

    1. INRA, UMR1163 Biotechnologie des Champignons Filamenteux, Aix-Marseille Université, ESIL Polytech Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille Cedex 09, France
    2. Aix-Marseille Univ, UMR1163 BCF, ESIL Polytech Marseille, 13288, Marseille, France
    3. Departamento de Biotecnolog?a y Ciencias Alimentarias, Instituto Tecnologico de Sonora, Cd. Obregon, 85000, Sonora, Mexico
  • ISSN:1432-0614
文摘
Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60?°C and 5 for CDHcc and 65-0?°C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700