Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks
详细信息    查看全文
  • 作者:Wen Huang ; Fei Xu ; Tao Qu ; Li Li …
  • 关键词:iodothyronine deiodinase ; Crassostrea gigas ; thyroid hormone (TH) ; clone ; expression analysis
  • 刊名:Chinese Journal of Oceanology and Limnology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:33
  • 期:4
  • 页码:997-1006
  • 全文大小:647 KB
  • 参考文献:Barca-Mayo O, Liao X H, Alonso M, Di Cosmo C, Hernandez A, Refetoff S, Weiss R E. 2011. Thyroid hormone receptor α and regulation of type 3 deiodinase. Mol. Endocrinol., 25(4): 575-83.View Article
    Berry M J, Banu L, Harney J W, Larsen P R. 1993. Functional characterization of the eukaryotic secis elements which direct selenocysteine insertion at UGA codons. EMBO J., 12(8): 3 315- 322.
    Bianco A C, Salvatore D, Gereben B, Berry M J, Larsen P R. 2002. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev., 23(1): 38-9.View Article
    Coon S L, Bonar D B, Weiner R M. 1985. Induction of settlement and metamorphosis of the Pacific oyster, Crassostrea gigas (Thunberg), by l-Dopa and catecholamines. J. Exp. Mar. Biol. Ecol., 94(1-): 211-21.View Article
    Croteau W, Davey J C, Galton V A, St Germain D L. 1996. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J. C lini. I nvest., 98(2): 405-17.
    Das B, Heimeier R A, Buchholz D R, Shi Y B. 2009. Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. J. Biol. Chem., 284(49): 34 167-4 178.View Article
    Du Y S, Zhang L L, Xu F, Huang B Y, Zhang G F, Li L. 2013. Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative realtime PCR. Fish Shellfish Immunol., 34(3): 939-45.View Article
    Fukazawa H, Hirai H, Hori H, Roberts R D, Nukaya H, Ishida H, Tsuji K. 2001. Induction of abalone larval metamorphosis by thyroid hormones. Fisheries Sci., 67(5): 985-87.View Article
    Heyland A, Price D A, Bodnarova-Buganova M, Moroz L L. 2006. Thyroid hormone metabolism and peroxidase function in two non-chordate animals. J. Exp. Zool. B Mol. Dev. Evol., 306B(6): 551-66.View Article
    Jakobs T C, Schmutzler C, Meissner J, Khrle J. 1997. The promoter of the human type I 5-deiodinase gene—mapping of the transcription start site and identification of a DR+4 thyroid-hormone-responsive element. Eur. J. Biochem., 247(1): 288-97.View Article
    Khrle J. 2002. Iodothyronine deiodinases. Methods Enzymol., 347: 125-67.View Article
    Laudet V. 2011. The origins and evolution of vertebrate metamorphosis. Curr. Biol., 21(18): R726–R737.View Article
    Lobanov A V, Fomenko D E, Zhang Y, Sengupta A, Hatfield D L, Gladyshev V N. 2007. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol., 8(9): R198.View Article
    Mariotti M, Lobanov A V, Guigo R, Gladyshev V N. 2013. SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Res., 41(15): e149.View Article
    Morvan-Dubois G, Demeneix B A, Sachs L M. 2008. Xenopus laevis as a model for studying thyroid hormone signalling: From development to metamorphosis. Mol. Cell. Endocrinol., 293(1-): 71-9.View Article
    Nakajima K, Fujimoto K, Yaoita Y. 2012. Regulation of thyroid hormone sensitivity by differential expression of the thyroid hormone receptor during Xenopus metamorphosis. Genes Cells, 17(8): 645-59.View Article
    Qu T, Huang B Y, Zhang L L, Li L, Xu F, Huang W, Li C Y, Du Y S, Zhang G F. 2014. Identification and functional characterization of two executioner caspases in Crassostrea gigas. PloS One, 9(2): e89040.View Article
    Roustaian P, Gaik L A. 2006. Effect of thyroxine immersion on larval survival, growth and postlarvae production of freshwater prawn, Macrobrachium rosenbergii (de Man). Aquac. Res., 37(13): 1 378- 380.View Article
    Schweizer U, Schlicker C, Braun D, Kohrle J, Steegborn C. 2014. Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc. Natl. Acad. Sci. USA, 111(29): 10 526-0 531.View Article
    Shepherdley C A, Klootwijk W, Makabe K W, Visser T J, Kuiper G G J M. 2003. An ascidian homolog of vertebrate iodothyronine deiodinases. Endocrinology, 145(3): 1 255- 268.View Article
    Tata J R. 2006. Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol. Cell. Endocrinol., 246(1-): 10-0.View Article
    Wu T T, Shi X W, Zhou Z, Wang L L, Wang M Q, Wang L L, Huang M M, Yang C Y, Song L S. 2012. An iodothyronine deiodinase from Chlamys farreri and its induced mRNA expression after LPS stimulation. Fish Shellfish Immunol., 33(2): 286-93.View Article
    Wu W J, Niles E G, Loverde P T. 2007. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni. BMC Evol. Biol., 7: 150.View Article
    Yen P M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev., 81(3): 1 097- 142.
    Zavacki A M, Ying H, Christoffolete M A, Ae
  • 作者单位:Wen Huang (1) (2)
    Fei Xu (1)
    Tao Qu (1)
    Li Li (1)
    Huayong Que (1)
    Guofan Zhang (1)

    1. National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • 刊物主题:Oceanography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-5005
文摘
Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas (CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700