Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function
详细信息    查看全文
  • 作者:Mark R. Heckle ; David M. Flatt ; Yao Sun ; Salvatore Mancarella…
  • 关键词:Myocyte atrophy ; Oxidative stress ; Ubiquitin ligases ; Deiodinase ; 3 ; Angiotensin II ; Low intracellular T3 ; Rebuilding myocardium
  • 刊名:Heart Failure Reviews
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:2
  • 页码:191-198
  • 全文大小:651 KB
  • 参考文献:1.Campbell SE, Rakusan K, Gerdes AM (1989) Change in cardiac myocyte size distribution in aortic-constricted neonatal rats. Basic Res Cardiol 84:247–258CrossRef PubMed
    2.Campbell SE, Korecky B, Rakusan K (1991) Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts. Circ Res 68:984–996CrossRef PubMed
    3.Shapiro LM, McKenna WJ (1984) Left ventricular hypertrophy: relation of structure to diastolic function in hypertension. Br Heart J 51:637–642PubMedCentral CrossRef PubMed
    4.Harvey PA, Leinwand LA (2014) Cardiac atrophy and remodeling. In: Willis MS, Homeister JW, Stone JR (eds) Cellular and molecular pathobiology of cardiovascular disease. Elsevier, New York, pp 37–50. doi:10.​1016/​B978-0-12-405206-2.​01001-2 CrossRef
    5.Kamalov G, Zhao W, Zhao T, Sun Y, Ahokas RA, Marion TN, Al Darazi F, Gerling IC, Bhattacharya SK, Weber KT (2013) Atrophic cardiomyocyte signaling in hypertensive heart disease. J Cardiovasc Pharmacol 62:497–506CrossRef PubMed
    6.Al Darazi F, Zhao W, Zhao T, Sun Y, Marion TN, Ahokas RA, Bhattacharya SK, Gerling IC, Weber KT (2014) Small dedifferentiated cardiomyocytes bordering on microdomains of fibrosis: evidence for reverse remodeling with assisted recovery. J Cardiovasc Pharmacol 64:237–246PubMedCentral CrossRef PubMed
    7.López JE, Myagmar BE, Swigart PM, Montgomery MD, Haynam S, Bigos M, Rodrigo MC, Simpson PC (2011) β-Myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circ Res 109:629–638PubMedCentral CrossRef PubMed
    8.Pandya K, Kim HS, Smithies O (2006) Fibrosis, not cell size, delineates β-myosin heavy chain reexpression during cardiac hypertrophy and normal aging in vivo. Proc Natl Acad Sci USA 103:16864–16869PubMedCentral CrossRef PubMed
    9.Cotran RS, Kumar V, Robbins SL (1989) Robbins pathologic basis of disease, 4th edn. W. B. Saunders, Philadelphia
    10.Karsner HT (1955) Human pathology. JB Lippincott, Philadelphia
    11.Leri A, Rota M, Pasqualini FS, Goichberg P, Anversa P (2015) Origin of cardiomyocytes in the adult heart. Circ Res 116:150–166PubMedCentral CrossRef PubMed
    12.Krayenbuehl HP, Hess OM, Schneider J, Turina M (1984) Left ventricular function and myocardial structure in aortic valve disease before and after surgery. Herz 9:270–278PubMed
    13.Lund O, Erlandsen M (2000) Changes in left ventricular function and mass during serial investigations after valve replacement for aortic stenosis. J Heart Valve Dis 9:583–593PubMed
    14.Zaglia T, Milan G, Franzoso M, Bertaggia E, Pianca N, Piasentini E, Voltarelli VA, Chiavegato D, Brum PC, Glass DJ, Schiaffino S, Sandri M, Mongillo M (2013) Cardiac sympathetic neurons provide trophic signal to the heart via β2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc Res 97:240–250CrossRef PubMed
    15.Harrison TR, Reeves TJ (1968) Principles and problems of ischemic heart disease. Year Book Medical Publications, Chicago
    16.Swynghedauw B (1995) Molecular cardiology for the cardiologist. Kluwer, BostonCrossRef
    17.Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652CrossRef PubMed
    18.Schiattarella GG, Hill JA (2015) Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131:1435–1447CrossRef PubMed
    19.Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z, Kerber RE, Weiss RM (2000) Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101:2863–2869CrossRef PubMed
    20.Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475CrossRef PubMed
    21.Konno T, Chen D, Wang L, Wakimoto H, Teekakirikul P, Nayor M, Kawana M, Eminaga S, Gorham JM, Pandya K, Smithies O, Naya FJ, Olson EN, Seidman JG, Seidman CE (2010) Heterogeneous myocyte enhancer factor-2 (Mef2) activation in myocytes predicts focal scarring in hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 107:18097–18102PubMedCentral CrossRef PubMed
    22.Ross J Jr (1976) Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 18:255–264CrossRef PubMed
    23.Cotter G, Moshkovitz Y, Milovanov O, Salah A, Blatt A, Krakover R, Vered Z, Kaluski E (2002) Acute heart failure: a novel approach to its pathogenesis and treatment. Eur J Heart Fail 4:227–234CrossRef PubMed
    24.Riester A, Weismann D, Quinkler M, Lichtenauer UD, Sommerey S, Halbritter R, Penning R, Spitzweg C, Schopohl J, Beuschlein F, Reincke M (2015) Life-threatening events in patients with pheochromocytoma. Eur J Endocrinol 173:757–764CrossRef PubMed
    25.Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF (1999) Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 84:735–740CrossRef PubMed
    26.Monrad ES, Hess OM, Murakami T, Nonogi H, Corin WJ, Krayenbuehl HP (1988) Time course of regression of left ventricular hypertrophy after aortic valve replacement. Circulation 77:1345–1355CrossRef PubMed
    27.Dahlof B (1993) The importance of the renin–angiotensin system in reversal of left ventricular hypertrophy. J Hypertens 11(3 Suppl):S29–S35
    28.Tischler ME, Rosenberg S, Satarug S, Henriksen EJ, Kirby CR, Tome M, Chase P (1990) Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39:756–763CrossRef PubMed
    29.Chin ER (2004) The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc 63:279–286CrossRef PubMed
    30.Liu Y, Shen T, Randall WR, Schneider MF (2005) Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26:13–21CrossRef PubMed
    31.Quintas LE, Cunha VM, Scaramello CB, da Silva CL, Caricati-Neto A, Lafayette SS, Jurkiewicz A, Noël F (2005) Adaptive expression pattern of different proteins involved in cellular calcium homeostasis in denervated rat vas deferens. Eur J Pharmacol 525:54–59CrossRef PubMed
    32.Zarzhevsky N, Menashe O, Carmeli E, Stein H, Reznick AZ (2001) Capacity for recovery and possible mechanisms in immobilization atrophy of young and old animals. Ann N Y Acad Sci 928:212–225CrossRef PubMed
    33.Shenkman BS, Nemirovskaya TL (2008) Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading. J Muscle Res Cell Motil 29:221–230CrossRef PubMed
    34.Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R (2011) Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol 589:2147–2160PubMedCentral CrossRef PubMed
    35.Powers SK, Smuder AJ, Criswell DS (2011) Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 15:2519–2528PubMedCentral CrossRef PubMed
    36.Schwoerer AP, Neef S, Broichhausen I, Jacubeit J, Tiburcy M, Wagner M, Biermann D, Didíe M, Vettel C, Maier LS, Zimmermann WH, Carrier L, Eschenhagen T, Volk T, El-Armouche A, Ehmke H (2013) Enhanced Ca2+ influx through cardiac L-type Ca2+ channels maintains the systolic Ca2+ transient in early cardiac atrophy induced by mechanical unloading. Pflugers Arch 465:1763–1773PubMedCentral CrossRef PubMed
    37.Bederman IR, Lai N, Shuster J, Henderson L, Ewart S, Cabrera ME (2015) Chronic hindlimb suspension unloading markedly decreases turnover rates of skeletal and cardiac muscle proteins and adipose tissue triglycerides. J Appl Physiol 119:16–26CrossRef PubMed
    38.Westby CM, Martin DS, Lee SM, Stenger MB, Platts SH (2015) Left ventricular remodeling during and after 60 days of sedentary head-down bed rest. J Appl Physiol (in press)
    39.Venditti P, De Rosa R, Di Meo S (2003) Effect of thyroid state on susceptibility to oxidants and swelling of mitochondria from rat tissues. Free Radic Biol Med 35:485–494CrossRef PubMed
    40.Mezosi E, Szabo J, Nagy EV, Borbely A, Varga E, Paragh G, Varga Z (2005) Nongenomic effect of thyroid hormone on free-radical production in human polymorphonuclear leukocytes. J Endocrinol 185:121–129CrossRef PubMed
    41.Zazueta C, Franco M, Correa F, García N, Santamaría J, Martínez-Abundis E, Chávez E (2007) Hypothyroidism provides resistance to kidney mitochondria against the injury induced by renal ischemia–reperfusion. Life Sci 80:1252–1258CrossRef PubMed
    42.Cattani D, Goulart PB, Cavalli VL, Winkelmann-Duarte E, Dos Santos AQ, Pierozan P, de Souza DF, Woehl VM, Fernandes MC, Silva FR, Gonçalves CA, Pessoa-Pureur R, Zamoner A (2013) Congenital hypothyroidism alters the oxidative status, enzyme activities and morphological parameters in the hippocampus of developing rats. Mol Cell Endocrinol 375:14–26CrossRef PubMed
    43.Gruber C, Nink N, Nikam S, Magdowski G, Kripp G, Voswinckel R, Mühlfeld C (2012) Myocardial remodelling in left ventricular atrophy induced by caloric restriction. J Anat 220:179–185PubMedCentral CrossRef PubMed
    44.Feild BJ, Baxley WA, Russell RO Jr, Hood WP Jr, Holt JH, Dowling JT, Rackley CE (1973) Left ventricular function and hypertrophy in cardiomyopathy with depressed ejection fraction. Circulation 47:1022–1031CrossRef PubMed
    45.Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D (1995) Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91:2717–2720CrossRef PubMed
    46.Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102:2713–2719CrossRef PubMed
    47.Mohapatra B, Vick GW III, Fraser CD Jr, Clunie SK, Towbin JA, Sinagra G, Vatta M (2010) Short-term mechanical unloading and reverse remodeling of failing hearts in children. J Heart Lung Transplant 29:98–104CrossRef PubMed
    48.Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J (2014) Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res 63:147–156PubMed
    49.Bonacchi M, Harmelin G, Bugetti M, Sani G (2015) Mechanical ventricular assistance as destination therapy for end-stage heart failure: has it become a first line therapy? Front Surg 2:35PubMedCentral CrossRef PubMed
    50.Dandel M, Hetzer R (2015) Myocardial recovery during mechanical circulatory support: cellular, molecular, genomic and organ levels. Heart Lung Vessel 7:110–120PubMedCentral PubMed
    51.Ausma J, Wijffels M, van Eys G, Koide M, Ramaekers F, Allessie M, Borgers M (1997) Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol 151:985–997PubMedCentral PubMed
    52.Fredj S, Bescond J, Louault C, Potreau D (2005) Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol 202:891–899CrossRef PubMed
    53.LaFramboise WA, Scalise D, Stoodley P, Graner SR, Guthrie RD, Magovern JA, Becich MJ (2007) Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am J Physiol Cell Physiol 292:C1799–C1808CrossRef PubMed
    54.Rücker-Martin C, Pecker F, Godreau D, Hatem SN (2002) Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro. Cardiovasc Res 55:38–52CrossRef PubMed
    55.Driesen RB, Verheyen FK, Dispersyn GD, Thoné F, Lenders MH, Ramaekers FC, Borgers M (2006) Structural adaptation in adult rabbit ventricular myocytes: influence of dynamic physical interaction with fibroblasts. Cell Biochem Biophys 44:119–128CrossRef PubMed
    56.Szibor M, Pöling J, Warnecke H, Kubin T, Braun T (2014) Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell Mol Life Sci 71:1907–1916CrossRef PubMed
    57.Zaglia T, Dedja A, Candiotto C, Cozzi E, Schiaffino S, Ausoni S (2009) Cardiac interstitial cells express GATA4 and control dedifferentiation and cell cycle re-entry of adult cardiomyocytes. J Mol Cell Cardiol 46:653–662CrossRef PubMed
    58.Ikeda K, Tojo K, Udagawa T, Otsubo C, Ishikawa M, Tokudome G, Hosoya T, Tajima N, Nakao K, Kawamura M (2008) Cellular physiology of rat cardiac myocytes in cardiac fibrosis: in vitro simulation using the cardiac myocyte/cardiac non-myocyte co-culture system. Hypertens Res 31:693–706CrossRef PubMed
    59.Yamazaki T, Yazaki Y (1999) Role of tissue angiotensin II in myocardial remodelling induced by mechanical stress. J Hum Hypertens 13(Suppl 1):S43–S47 (discussion S49–S50) CrossRef PubMed
    60.Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26CrossRef PubMed
    61.Nishi H, Ono K, Horie T, Nagao K, Kinoshita M, Kuwabara Y, Watanabe S, Takaya T, Tamaki Y, Takanabe-Mori R, Wada H, Hasegawa K, Iwanaga Y, Kawamura T, Kita T, Kimura T (2011) MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor β1 in neonatal rat ventricular myocytes. Mol Cell Biol 31:744–755PubMedCentral CrossRef PubMed
    62.Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A, Marchini M, Zucchi R, Visser TJ, Paulus WJ, Duncker DJ, Simonides WS (2011) Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152:669–679CrossRef PubMed
    63.Wassen FW, Schiel AE, Kuiper GG, Kaptein E, Bakker O, Visser TJ, Simonides WS (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815CrossRef PubMed
    64.Kecskés M, Jacobs G, Kerselaers S, Syam N, Menigoz A, Vangheluwe P, Freichel M, Flockerzi V, Voets T, Vennekens R (2015) The Ca2+-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy. Basic Res Cardiol 110:43PubMedCentral CrossRef PubMed
    65.Guo RW, Yang LX, Li MQ, Pan XH, Liu B, Deng YL (2012) Stim1- and Orai1-mediated store-operated calcium entry is critical for angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 93:360–370CrossRef PubMed
    66.Götze S, Auch-Schwelk W, Bossaller C, Thelen J, Fleck E (1993) Calcium entry blockade may prevent cyclosporin A-induced hypersensitivity to angiotensin II and endothelial dysfunction in the rat aorta. Eur Heart J 14(Suppl I):104–110PubMed
    67.Asemu G, O’Connell KA, Cox JW, Dabkowski ER, Xu W, Ribeiro RF Jr, Shekar KC, Hecker PA, Rastogi S, Sabbah HN, Hoppel CL, Stanley WC (2013) Enhanced resistance to permeability transition in interfibrillar cardiac mitochondria in dogs: effects of aging and long-term aldosterone infusion. Am J Physiol Heart Circ Physiol 304:H514–H528PubMedCentral CrossRef PubMed
    68.Schips TG, Wietelmann A, Höhn K, Schimanski S, Walther P, Braun T, Wirth T, Maier HJ (2011) FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc Res 91:587–597CrossRef PubMed
    69.Cao DJ, Jiang N, Blagg A, Johnstone JL, Gondalia R, Oh M, Luo X, Yang KC, Shelton JM, Rothermel BA, Gillette TG, Dorn GW, Hill JA (2013) Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J Am Heart Assoc 2:e000016PubMedCentral CrossRef PubMed
    70.Baskin KK, Rodriguez MR, Kansara S, Chen W, Carranza S, Frazier OH, Glass DJ, Taegtmeyer H (2014) MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. J Mol Cell Cardiol 72:168–176PubMedCentral CrossRef PubMed
    71.Willis MS, Rojas M, Li L, Selzman CH, Tang RH, Stansfield WE, Rodriguez JE, Glass DJ, Patterson C (2009) Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol 296:H997–H1006PubMedCentral CrossRef PubMed
    72.Hinch EC, Sullivan-Gunn MJ, Vaughan VC, McGlynn MA, Lewandowski PA (2013) Disruption of pro-oxidant and antioxidant systems with elevated expression of the ubiquitin proteosome system in the cachectic heart muscle of nude mice. J Cachexia Sarcopenia Muscle 4:287–293PubMedCentral CrossRef PubMed
    73.Brinks H, Giraud MN, Segiser A, Ferrié C, Longnus S, Ullrich ND, Koch WJ, Most P, Carrel TP, Tevaearai HT (2014) Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. J Heart Lung Transplant 33:203–210PubMedCentral CrossRef PubMed
    74.Kamalov G, Ahokas RA, Zhao W, Zhao T, Shahbaz AU, Johnson PL, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2010) Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism. J Cardiovasc Pharmacol 55:248–254PubMedCentral CrossRef PubMed
    75.Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53:414–423PubMedCentral CrossRef PubMed
    76.Khan MU, Zhao W, Zhao T, Al Darazi F, Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT (2013) Nebivolol: a multifaceted antioxidant and cardioprotectant in hypertensive heart disease. J Cardiovasc Pharmacol 62:445–451CrossRef PubMed
    77.Cheema Y, Zhao W, Zhao T, Khan MU, Green KD, Ahokas RA, Gerling IC, Bhattacharya SK, Weber KT (2012) Reverse remodeling and recovery from cachexia in rats with aldosteronism. Am J Physiol Heart Circ Physiol 303:H486–H495PubMedCentral CrossRef PubMed
  • 作者单位:Mark R. Heckle (1)
    David M. Flatt (2)
    Yao Sun (2)
    Salvatore Mancarella (3)
    Tony N. Marion (4)
    Ivan C. Gerling (5)
    Karl T. Weber (2)

    1. Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
    2. Division of Cardiovascular Diseases, University of Tennessee Health Science Center, 956 Court Ave., Suite A312, Memphis, TN, 38163, USA
    3. Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
    4. Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
    5. Division of Endocrinology, University of Tennessee Health Science Center, Memphis, TN, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-7322
文摘
Cardiomyocytes must be responsive to demands placed on the heart’s contractile work as a muscular pump. In turn, myocyte size is largely dependent on the workload they perform. Both hypertrophied and atrophic myocytes are found in the normal and diseased ventricle. Individual myocytes become atrophic when encumbered by fibrillar collagen, such as occurs at sites of fibrosis. The mechanisms include: (a) being immobilized and subject to disuse with ensuing protein degradation mediated by redox-sensitive, proteolytic ligases of the ubiquitin–proteasome system and (b) dedifferentiated re-expressing fetal genes induced by low intracellular triiodothyronine (T3) via thyroid hormone receptor β1. This myocyte-selective, low T3 state is a consequence of heterocellular signaling emanating from juxtaposed scar tissue myofibroblasts and their secretome with its de novo generation of angiotensin II. In a paracrine manner, angiotensin II promotes myocyte Ca2+ entry and subsequent Ca2+ overload with ensuing oxidative stress that overwhelms antioxidant defenses to activate deiodinase-3 and its enzymatic degradation of T3. In the failing heart, atrophic myocytes represent an endogenous population of viable myocytes which could be rescued to augment contractile mass, reduce systolic wall stress (afterload) and recover ventricular function. Experimental studies have shown the potential for the rescue and recovery of atrophic myocytes in rebuilding the myocardium—a method complementary to today’s quest in regenerating myocardium using progenitor cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700