Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation
详细信息    查看全文
  • 作者:Javier Terol ; Victoria Iba?ez ; José Carbonell ; Roberto Alonso…
  • 关键词:Double ; strand breaks ; Crossover hot spot ; Structural variations ; Transposable ; element
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,100 KB
  • 参考文献:1. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14(2):125-8. CrossRef
    2. Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat. 2003;22(3):229-4. CrossRef
    3. Huang CR, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet. 2012;46:651-5. CrossRef
    4. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331-8. CrossRef
    5. Pritham EJ. Transposable elements and factors influencing their success in eukaryotes. J Hered. 2009;100(5):648-5. CrossRef
    6. Sankaranarayanan K, Wassom JS. Ionizing radiation and genetic risks XIV, potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders. Mutat Res. 2005;578(1-):333-0. CrossRef
    7. Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 1994;65(1):7-7. CrossRef
    8. Sage E, Harrison L. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res. 2011;711(1-):123-3. CrossRef
    9. Changela A, Perry K, Taneja B, Mondragon A. DNA manipulators: caught in the act. Curr Opin Struct Biol. 2003;13(1):15-2. CrossRef
    10. Yu Z, Wright SI, Bureau TE. Mutator-like elements in / Arabidopsis thaliana. Structure, diversity and evolution. Genetics. 2000;156(4):2019-1.
    11. Lisch D. Mutator transposons. Trends Plant Sci. 2002;7(11):498-04. CrossRef
    12. Diao XM, Lisch D. Mutator transposon in maize and MULEs in the plant genome. Yi Chuan Xue Bao. 2006;33(6):477-7.
    13. Gao D. Identification of an active Mutator-like element (MULE) in rice ( / Oryza sativa). Mol Genet Genomics. 2012;287(3):261-1. CrossRef
    14. Robertson DS, Stinard PS. Genetic evidence of mutator-induced deletions in the short arm of chromosome 9 of maize. Genetics. 1987;115(2):353-1.
    15. Gray YH. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet. 2000;16(10):461-. CrossRef
    16. Jennes I, de Jong D, Mees K, Hogendoorn PC, Szuhai K, Wuyts W. Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 multiple osteochondromas families. BMC Med Genet. 2011;12:85. 2350-12-85. CrossRef
    17. Xuan YH, Piao HL, Je BI, Park SJ, Park SH, Huang J, et al. Transposon Ac/Ds-induced chromosomal rearrangements at the rice OsRLG5 locus. Nucleic Acids Res. 2011;39(22):e149. CrossRef
    18. van Zelm MC, Geertsema C, Nieuwenhuis N, de Ridder D, Conley ME, Schiff C, et al. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements. Am J Hum Genet. 2008;82(2):320-2. CrossRef
    19. Sachs RK, Chen AM, Brenner DJ. Review: proximity effects in
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Transposable-element mediated chromosomal rearrangements require the involvement of two transposons and two double-strand breaks (DSB) located in close proximity. In radiobiology, DSB proximity is also a major factor contributing to rearrangements. However, the whole issue of DSB proximity remains virtually unexplored. Results Based on DNA sequencing analysis we show that the genomes of 2 derived mutations, Arrufatina (sport) and Nero (irradiation), share a similar 2?Mb deletion of chromosome 3. A 7?kb Mutator-like element found in Clemenules was present in Arrufatina in inverted orientation flanking the 5-end of the deletion. The Arrufatina Mule displayed “dissimilar-9-bp target site duplications separated by 2?Mb. Fine-scale single nucleotide variant analyses of the deleted fragments identified a TTC-repeat sequence motif located in the center of the deletion responsible of a meiotic crossover detected in the citrus reference genome. Conclusions Taken together, this information is compatible with the proposal that in both mutants, the TTC-repeat motif formed a triplex DNA structure generating a loop that brought in close proximity the originally distinct reactive ends. In Arrufatina, the loop brought the Mule ends nearby the 2 distinct insertion target sites and the inverted insertion of the transposable element between these target sites provoked the release of the in-between fragment. This proposal requires the involvement of a unique transposon and sheds light on the unresolved question of how two distinct sites become located in close proximity. These observations confer a crucial role to the TTC-repeats in fundamental plant processes as meiotic recombination and chromosomal rearrangements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700