Towards a combined fractional mechanics and quantization
详细信息    查看全文
  • 作者:Agnieszka B. Malinowska (1) a.malinowska@pb.edu.pl
    Delfim F. M. Torres (2) delfim@ua.pt
  • 关键词:Key Words and Phrases fractional canonical formalism – ; Hamiltonian approach – ; variational principles of physics – ; nonconservative systems – ; combined fractional derivatives – ; variational calculus
  • 刊名:Fractional Calculus and Applied Analysis
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:15
  • 期:3
  • 页码:407-417
  • 全文大小:178.5 KB
  • 参考文献:1. E.M.C. Abreu and C.F.L. Godinho, Fractional Dirac bracket and quantization for constrained systems. Phys. Rev. E 84 (2011), 026608, 8 pp.
    2. O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, No 1 (2002), 368–379.
    3. O.P. Agrawal, S.I. Muslih and D. Baleanu, Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 12 (2011), 4756–4767.
    4. R. Almeida, S. Pooseh and D.F.M. Torres, Fractional variational problems depending on indefinite integrals. Nonlinear Analysis 75, No 3 (2012), 1009–1025.
    5. R. Almeida and D.F.M. Torres, Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput. 217, No 3 (2010), 956–962.
    6. R. Almeida and D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1490–1500.
    7. R. Almeida and D.F.M. Torres, Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 61, No 10 (2011), 3097–3104.
    8. D. Baleanu, Fractional Hamiltonian analysis of irregular systems. Signal Process. 86, No 10 (2006), 2632–2636.
    9. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific Publ. (Ser. on Complexity, Nonlinearity and Chaos, 3), N. Jersey-London-Singapore (2012).
    10. N.R.O. Bastos, R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29, No 2 (2011), 417–437.
    11. G.S.F. Frederico and D.F.M. Torres, Nonconservative Noether’s theorem in optimal control. Int. J. Tomogr. Stat. 5, No W07 (2007), 109–114.
    12. G.S.F. Frederico and D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53, No 3 (2008), 215–222.
    13. G.S.F. Frederico and D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217, No 3 (2010), 1023–1033.
    14. H. Goldstein, Classical Mechanics. Addison-Wesley Press, Inc., Cambridge, MA (1951).
    15. A.K. Golmankhaneh, Fractional Poisson bracket. Turk. J. Phys. 32 (2008), 241–250.
    16. M.A.E. Herzallah and D. Baleanu, Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dynam. 58, No 1–2 (2009), 385–391.
    17. M.A.E. Herzallah and D. Baleanu, Fractional-order variational calculus with generalized boundary conditions. Adv. Difference Equ. 2011 (2011), Article ID 357580, 9 pp.
    18. A.B. Malinowska and D.F.M. Torres, Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Appl. Math. Comput. 217, No 3 (2010), 1158–1162.
    19. A.B. Malinowska and D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, No 4 (2011), 523–537; DOI: 10.2478/s13540-011-0032-6;
    20. A.B. Malinowska and D.F.M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl. Math. Comput. 218, No 9 (2012), 5099–5111.
    21. T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75, No 3 (2012), 1507–1515.
    22. E.M. Rabei and B.S. Ababneh, Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl. 344, No 2 (2008), 799–805.
    23. E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih and D. Baleanu, The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, No 2 (2007), 891–897.
    24. F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53, No 2 (1996), 1890–1899.
    25. F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E (3) 55, No 3 (1997), Part B, 3581–3592.
    26. C.J. Silva and D.F.M. Torres, Absolute extrema of invariant optimal control problems. Commun. Appl. Anal. 10, No 4 (2006), 503–515.
    27. D.F.M. Torres, On the Noether theorem for optimal control. Eur. J. Control 8, No 1 (2002), 56–63.
    28. D.F.M. Torres, Gauge symmetries and Noether currents in optimal control. Appl. Math. E-Notes 3 (2003), 49–57.
    29. D.F.M. Torres, Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations. Commun. Pure Appl. Anal. 3, No 3 (2004), 491–500.
    30. D.F.M. Torres and G. Leitmann, Contrasting two transformationbased methods for obtaining absolute extrema. J. Optim. Theory Appl. 137, No 1 (2008), 53–59.
  • 作者单位:1. Faculty of Computer Science, Bia艂ystok University of Technology, 15-351 Bia艂ystok, Poland2. Center for Research and Development in Mathematics and Applications Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
文摘
A fractional Hamiltonian formalism is introduced for the recent combined fractional calculus of variations. The Hamilton-Jacobi partial differential equation is generalized to be applicable for systems containing combined Caputo fractional derivatives. The obtained results provide tools to carry out the quantization of nonconservative problems through combined fractional canonical equations of Hamilton type.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700