Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4
详细信息    查看全文
  • 作者:Ameesha R. Shetty ; Vidya de Gannes ; Chioma C. Obi…
  • 关键词:Delftia acidovorans Cs1 ; 4 ; Genome ; phn island ; Phenanthrene ; polycyclic aromatic hydrocarbons ; Nanopods
  • 刊名:Standards in Genomic Sciences
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:1597KB
  • 参考文献:1.Vacca DJ, Bleam WF, Hickey WJ. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol. 2005;71:3797鈥?05.PubMed Central CrossRef PubMed
    2.Shetty A, Chen S, Tocheva EI, Grant J, Hickey WJ. Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS ONE. 2011;6, e20725.PubMed Central CrossRef PubMed
    3.Shetty A, Hickey WJ. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4. PLoS ONE. 2014;9, e92143.PubMed Central CrossRef PubMed
    4.Stolz A. Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol. 2009;81:793鈥?11.CrossRef PubMed
    5.Moser R, Stahl U. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol. 2001;55:609鈥?8.CrossRef PubMed
    6.Hickey WJ, Chen S, Zhao J. The phn island: a new genomic island encoding catabolism of polynuclear aromatic hydrocarbons. Front Microbiol. 2012;3:1鈥?5.CrossRef
    7.Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem. 2003;67:225鈥?3.CrossRef PubMed
    8.Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003;14:262鈥?.CrossRef PubMed
    9.Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Phys. 1959;37:911鈥?.CrossRef
    10.Yi EC, Hackett M. Rapid isolation method for lipopolysaccharide and lipid A from Gram-negative bacteria. Analyst. 2000;125:651鈥?.CrossRef PubMed
    11.Gallagher S, Winston SE, Fuller SA, Hurrell JGR. Immunoblotting and Immunodetection. In: Ausubel R, Bent RE, editors. Protocols in Molecular Biology. New York: John Wiley & Sons; 2008. p. 10.8.1鈥?0.8.28.
    12.Wilson K. Preparation of genomic DNA from bacteria. In: Ausubel R, Bent RE, editors. Current Protocols in Molecular Biology. New York: John Wiley & Sons; 2001. p. 2.4.1鈥?.
    13.Schleheck D, Knepper TP, Fischer K, Cook AM. Mineralization of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol. 2004;70:4053鈥?3.PubMed Central CrossRef PubMed
    14.Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Phil Trans R Soc B. 2006;361:1929鈥?0.PubMed Central CrossRef PubMed
    15.Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Micrbiol. 2014;64:364鈥?1.
    16.Eisen J, Heidelberg J, White O, Salzberg S. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 2000;1:1鈥?.CrossRef
    17.Ravatan R, Studer S, Zehnder AJ, van der Meer JR. Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J Bacteriol. 1998;180:5505鈥?4.
    18.Basler M, Ho BT, Mekalanos JJ. Tit-for-tat: Type VI secretion system counterattack during bacterial cell-cell interactions. Cell. 2013;154:884鈥?4.CrossRef
    19.Tischler D, Gr枚ning JAD, Kaschabek SR, Schl枚mann M. One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl Biochem Biotechnol. 2012;167:931鈥?4.CrossRef PubMed
    20.Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A. 2010;107:14390鈥?.PubMed Central CrossRef PubMed
    21.Luengo JM, Garc玫 JL, Olivera ER. The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol. 2001;39:1434鈥?2.CrossRef PubMed
    22.Harwood CS, Burchhardt G, Herrmann H, Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev. 1998;22:439鈥?8.CrossRef
    23.Jim茅nez JI, Canales A, Jim茅nez-Barbero J, Ginalski K, Leszek R, Garc铆a JL, et al. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci U S A. 2008;105:11329鈥?4.PubMed Central CrossRef PubMed
    24.Wang X-Z, Li B, Herman PL, Weeks DP. A three component enzyme system catalyzes the O-demethylation of the herbicide Dicamba in Pseudomonas maltophilia D1-6. Appl Environ Microbiol. 1997;63:1623鈥?.PubMed Central PubMed
    25.Tago K, Sato J, Takesa H, Kawagishi H, Hayatsu M. Characterization of methylhydroquinone-metabolizing oxygenase genes encoded on plasmid in Burkholderia sp. NF100. J Biosci Bioeng. 2005;100:517鈥?3.CrossRef PubMed
    26.Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576鈥?.PubMed Central CrossRef PubMed
    27.Garrity GM, Bell JA, Pylum LT, XIV. Proteobacteria phyl nov. In: Garrity GM, Brenner DJ, Krieg NR, Stanley JT, editors. Bergey鈥檚 Manual of Systematic Bacteriology, vol. 2. 2nd ed. Springer, New York: Part C; 2005. p. 1.CrossRef
    28.Garrity GM, Bell JA, Lilburn T. Class II. Betaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Stanley JT, editors. Bergey鈥檚 Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C. Springer: New York; 2005. p. 575.CrossRef
    29.Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2006;56:1鈥?.CrossRef
    30.Garrity GM, Bell JA, Lilburn T, Order I. Burkholderiales ord nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey鈥檚 Manual of Systematic Bacteriology, vol. 2. 2nd ed. Springer, New York: Part C; 2005. p. 575.CrossRef
    31.Willems A, De Ley J, Gillis M, Kersters K. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol. 1991;41:445鈥?0.CrossRef
    32.Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Evol Micrbiol. 1999;9:567鈥?6.
    33.Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25鈥?.PubMed Central CrossRef PubMed
  • 作者单位:Ameesha R. Shetty (1)
    Vidya de Gannes (2)
    Chioma C. Obi (3)
    Susan Lucas (4)
    Alla Lapidus (5)
    Jan-Fang Cheng (4)
    Lynne A. Goodwin (6)
    Samuel Pitluck (4)
    Linda Peters (4)
    Natalia Mikhailova (4)
    Hazuki Teshima (6)
    Cliff Han (6)
    Roxanne Tapia (6)
    Miriam Land (7)
    Loren J. Hauser (7)
    Nikos Kyrpides (4)
    Natalia Ivanova (4)
    Ioanna Pagani (4)
    Patrick S. G. Chain (6)
    Vincent J Denef (8)
    Tanya Woyke (4)
    William J. Hickey (1)

    1. O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
    2. Department of Food Production, University of the West Indies, St. Augustine, Trinidad and Tobago
    3. Department of Microbiology, University of Lagos, Lagos, Nigeria
    4. DOE Joint Genome Institute, Walnut Creek, CA, USA
    5. Algorithmic Biology Lab, St. Petersburg Academic University, St.Petersburg, Russia
    6. Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
    7. Oak Ridge National Laboratory, Oak Ridge, TN, USA
    8. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
  • 刊物类别:Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics;
  • 刊物主题:Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics;
  • 出版者:BioMed Central
  • ISSN:1944-3277
文摘
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs in two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3鈥?end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway), styrene, nicotinic acid (by the maleamate pathway) and the pesticides Dicamba and Fenitrothion. Determination of the complete genome sequence of D. acidovorans Cs1-4 has provided new insights the microbial mechanisms of PAH biodegradation that may shape the process in the environment. Keywords Delftia acidovorans Cs1-4 Genome phn island Phenanthrene polycyclic aromatic hydrocarbons Nanopods

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700