Delineation of fluvial sediment architecture of subalpine riverine systems using noninvasive hydrogeophysical methods
详细信息    查看全文
  • 作者:Daniel Altdorff (1) (3)
    Jannis Epting (2)
    Jan van der Kruk (3)
    Peter Dietrich (1)
    Peter Huggenberger (2)
  • 关键词:ECa forward modelling ; Noninvasive methods ; 3D Geological structure model ; Channel restoration ; Sediment architecture ; EMI ; Cluster analysis ; Gamma ; spectrometry ; GPR
  • 刊名:Environmental Earth Sciences
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:69
  • 期:2
  • 页码:633-644
  • 全文大小:936KB
  • 参考文献:1. Abdu H, Robinson DA, Seyfried M, Jones SB (2008) Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity. Water Resour Res 44
    2. Altdorff D, Dietrich P (2012) Combination of electromagnetic induction (EMI) and gamma-spectrometry using K-means clustering: a study for evaluation of site partitioning. J Plant Nutr Soil Sci. doi:10.1002/jpln.201100262
    3. Anderson WL (1979) Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics 44:1287-305. doi:10.1190/1.1441007 CrossRef
    4. Bierwirth P, Gessler P, McKane D (1996) Empirical investigation of airborne gamma-ray images as an indicator of soil properties Wagga Wagga, NSW. AGSO record
    5. Brierley GJ, Frvirs K (2000) River styles, a geomorphic approach to catchment characterization: implications for river rehabilitation in Bega Catchment, New South Wales. Australia. Environmental Management 25(6):661-79
    6. Brierley GJ, Frvirs K (2005) Geomorphology and river management: applications of the river styles framework. Blackwell Publishing, Oxford, p 398
    7. Brierley GJ, Frvirs K (2008) River futures: an integrative scientific approach to river repair. Island Press, Washington, p 328
    8. Brocca L, Melone F et al (2009) Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 148(3-):364-74 CrossRef
    9. Buwal/BWG (Hrsg) 2003 Leitbild Fliessgew?sser Schweiz, Für eine nachhaltige Gew?sserpolotik. Bern, 12 Seiten
    10. CEN—European Committee for Standardization (2011) Best practice approach for electromagnetic induction measurements of the near surface, approved business plan, CEN workshop 59
    11. Chow JJ, Chang SK, Yu HS (2006) GPR reflection characteristics and depositional models of mud volcanic sediments—Wushanting mud volcano field. Southwestern Taiwan JOURNAL OF APPLIED GEOPHYSICS 60(3-):179-00 CrossRef
    12. City of Willisau (2008) Averaging flow rate measured on 13th November 2008 during a construction project in Willisau/Canton Luzern/Switzerland
    13. Cockx L, Van Meirvenne M, De Vos B (2007) Using the EM38DD Soil sensor to delineate clay lenses in a sandy forest soil. Soil Sci Soc Am J 71(4):1314-322 CrossRef
    14. Darnley AG, Ford KL (1987) Regional airborne gamma-ray surveys: a review. In: Garland GD (ed) Exploration -7. Third Decennial International Conference on Geophysical and Geochemical Exploration for Minerals and Groundwater, special volume 3. Geological Survey of Canada, Ontario, Canada, pp. 229-40
    15. Di Prinzio M, Bittelli M, Castellarin A, Pisa PR (2010) Application of GPR to the monitoring of river embankments. J Appl Geophys 71(2-):53-1 CrossRef
    16. Dietrich P, Tronicke J (2009) Integrated analysis and interpretation of cross-hole P- and S-wave tomograms: a case study. Near Geophysics 7(2):101-09
    17. Dietrich P, Fechner Th, Whittaker J, Teutsch G (1998) A intergated hydrogeophysical approach to surface characterization. In: Herbert M, Kovar K (eds) Groundwater quality: remediation and protection. IAHS Publication, 250. ISSN:0144-7815:513-520
    18. Djadia L, Machane D, Chatelain JL, Abtout A, Bensalem R, Guemache MA, Guillier B, Boudella A, Oubaiche EH (2010) Evidence for an underground runoff and soil permeability at the Ouled Fayet (Algiers, Algeria) subsurface landfill pilot project from geophysical investigations. Environmental Earth Sciences 59(5):1149-158 CrossRef
    19. Elwaseif M, Ismail A, Abdalla M, Abdel-Rahman MM, Hafez MA (2012) Geophysical and hydrological investigations at the west bank of Nile River (Luxor, Egypt). Environmental Earth Sciences 67(3):911-21 CrossRef
    20. Geographical Dictionary Switzerland (1910) http://www.swisstopo.admin.ch. Accessed Aug 2011
    21. Gerber ME, Kopp J (eds) (1994) Landeshydrologie und Geologie, Geologischer Atlas der Schweiz, map sheet 1129: Sursee
    22. Gilbert JM, Warner BG, Aravena R, Davies JC, Brook D (1999) Mixing of floodwaters in a resorted habitat wetland in northern Ontario. Wetland 19(I):106-17 CrossRef
    23. Hedley CB, Yule IJ, Eastwood CR, Shepherd TG, Arnold G (2004) Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils. Aust J Soil Res 42:389-00 CrossRef
    24. Huggenberger P, Meier E (1993) Anwendung des Georadars in der Hydrogeologie: Erkennung von Inhomogenit?ten im Hinblick auf eine quantitative Beschreibung von Stofftransportprozessen. Wasser, Energie, Luft 5-:119-23
    25. Huisman JA, Hubbard SS, Redman JD, Annan AP (2003) Measuring soil water content with ground penetrating radar: a review. Vadose Zone Journal 2:476-91
    26. International Atomic Energy Agency (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. ISBN:92--08303-
    27. Irvin BJ, Ventura SJ, Slater BK (1997) Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77:137-54 CrossRef
    28. J?hnig CK, Brabec A, Erba S, Lorenz AW, Ofenb?ck T, Verdonschot PFM, Hering D (2010) A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. J Appl Ecol 2010(47):671-80 CrossRef
    29. Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. In: International series of monographs in electromagnetic waves 10. Pergamon Press, Oxford
    30. Kronvang B, Hoffmannand CC, Dr?ge R (2009) Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Mar Freshw Res 2009(60):638-46 CrossRef
    31. Lambot S, Weihermüller L, Huisman JA, Vereecken H, Vanclooster M, Slob EC (2006) Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resour Res 42:W11403. doi:10.1029/2006WR005097
    32. Larsen LG, Harvey JW (2011) Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology 126(3-):279-96 CrossRef
    33. Lavoué F, van der Kruk J, Rings J, Andre F, Moghadas D, Huisman JA, Lambot S, Weihermüller L, van der Borght J, Vereecken H (2010) Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography. Near Surface Geophys. 8:553-61
    34. Lennox MS, Lewis DJ, Jackson RD, Harper J, Larson S, Tate KW (2011) Development of vegetation and aquatic habitat in restored riparian sites of California’s north coast rangelands. Restor Ecol 19(2):225-33 CrossRef
    35. Linde NI, Coscia JA Doetsch, Greenhalgh SA, Vogt T, Schneider P, Green A (2010) Hydrogeophysical studies in unrestored and restored river corridors of the Thur River, Switzerland. First Break 28:69-5
    36. Liu LB, Li Y, Zhou CG (2000) Identification of paleo-liquefaction and deformation features with GPR in the New Madrid seismic zone GPR 2000 In: proceedings of the eight international conference on ground penetrating radar. Book series: proceedings of spie—the international society for optical engineering V. 3380, pp 383-89
    37. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281-97
    38. Martinez G, Vanderlinden K, Espejo A, Muriel JL (2010) Field-scale soil moisture patter mapping using electromagnetic induction. Vadose Zone J. 9:871-81 CrossRef
    39. McArthur SAQ, Allen DM, Luzitano RD (2011) Resolving scales of aquifer heterogeneity sing ground penetrating radar and borehole geophysical logging. Environ Earth Sci 63(3):581-93 CrossRef
    40. McNeil JD (1980) Electromagnetic terrain conductivity measurement at low induction numbers. Geonics. Ltd., technical note TN-6
    41. Mester A, van der Kruk J, Zimmermann E, Vereecken H (2011) Quantitative two-layer conductivity inversion of multi-configuration electromagnetic. Induction Measurements Vadose Zone Journal 10:1319-330 CrossRef
    42. Mika S, Hoyle J, Kyle G, Pusey B, Spencer J, Spink AM (2010) Inside the “black box-of river restoration: using catchment history to identify disturbance and response mechanisms to set targets for process-based restoration
    43. Nanson GC, Croke JC (1992) A genetic classification of floodplains. Geomorphology 4:459-86 CrossRef
    44. Paasche H, Tronicke J, Dietrich P (2010) Automated integration of partially collocated models: subsurface zonation using a modified fuzzy c-means cluster analysis algorithm. Geophysics 75(3):11-2 CrossRef
    45. Porsani JL, Filho WM, Elis VR, Shimeles F, Dourado JC, Moura (2004) HP the use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. J Appl Geophys 55(3-):199-09 CrossRef
    46. Pracilio G, Adams ML, Smettem KRJ, Harper RJ (2006) Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry. Plant Soil 282:67-2 CrossRef
    47. Robinson NJ, Rampant PC, Callinan APL, Rab MA, Fisher PD (2009) Advances in precision agriculture in south-eastern Australia. II. Spatio-temporal prediction of crop yield using terrain derivatives and proximally sensed data. Crop Pasture Sci 60:859-69 CrossRef
    48. Robinson DA, Abdu H, Lebron I, Jones SB (2012) Imaging of hill-slope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction. J Hydrol 419-17:39-9 CrossRef
    49. Rohde S, Kienast F, Bürgi M (2004) Assessing the restoration success of river windenings: a landscape approach. Environ Manage 34(4):574-89 CrossRef
    50. Sandmeier Software (2010). http://www.sandmeier-geo.de/. Accessed Aug 2011
    51. Santos RNS, Porsani JL (2011) Comparing performance of instrumental drift correction by linear and quadratic adjusting in inductive electromagnetic data. J Appl Geophys 73:1- CrossRef
    52. Sholtes JS, Doyle MW (2011) Effect of channel restoration on flood wave attenuation. J Hydraulic Eng 137(2):196-08 CrossRef
    53. Sivirichi GM, Kaushal SS, Mayer PM, Welty C, Belt KT, Newcomer TA, Newcomb KD, Grese MM (2011) Longitudinal variability in streamwater chemistry and carbon and nitrogen fluxes in restored and degraded urban stream networks. J Environ Monit 13:288-03 CrossRef
    54. Steelman CM, Endres AL (2009) Evolution of high-frequency ground-penetrating radar direct ground wave propagation during thin frozen soil layer development. Cold Reg Sci Technol 57:116-22 CrossRef
    55. SYSTAT Software (2007) Product information. San Jose SYSTAT Software, Inc. www.systat.com. Accessed July 2011
    56. Taylor MJ, Smettem K (2002) Relationships between soil properties and high-resolution radiometrics, central eastern Wheatbelt, Western Australia. Explor Geophys 33(2):95-02 CrossRef
    57. Trexler JC (1995) Restoration of the Kissimmee River: a conceptual model of past and present fish communities and its consequences for evaluation restoration success. Restor Ecol 3(3):195-10 CrossRef
    58. Triantafilis J, Lesch SM (2005) Mapping clay content variation using electromagnetic induction techniques. Computers and Electronics in Agriculture 46:203-37 CrossRef
    59. Tsabaris C, Kapsimalis V, Eleftheriou G, Laubenstein M, Kaberi H, Plastino W (2012) Determination of Cs-137 activities in surface sediments and derived sediment accumulation rates in Thessaloniki Gulf Greece. Environmental Earth Sciences Volume 67(3):833-43 CrossRef
    60. van der Krug J, Meekes JAC, Van Den Berg PM, Fokkema JT (2000) An apparent-resistivity concept for low-frequency electromagnetic sounding techniques. Geophyiscal Prospecting 48:1033-052 CrossRef
    61. Viscarra Rossel RA, Taylor HJ, McBratney A (2007) Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. Eur J Soil Sci 58(1):343-53 CrossRef
    62. Wagner W, Pathe C, Doubkova M, Sabel D, Bartsch A, Hasenauer S, Bl?schl G, Martinez-Fernandez J, Loew A (2008) Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR). Sensors 8:1174-197 CrossRef
    63. Wait J (1982) Geo-electromagnetism. Academic Press, New York
    64. Ward SH, Hohmann G (1988) In: Nabighian MN (ed) Electromagnetic theory for geophysical applications, vol 1. Society of Exploration Geophysicists
    65. Weller U, Zipprich M, Sommer M, Zu Castell W, Wehrhan M (2007) Mapping clay content across boundaries at the landscape scale with electromagnetic induction. Soil Sci Soc Am J 71:1740-747 CrossRef
    66. Wohl E (2010) Compromised rivers: understanding historical human impacts on rivers in the context of restoration. Restoration. Ecology and Society 10(2):2
    67. Wong MTF, Harper RJ (1999) Use of on-ground gamma-ray spectrometry to measure plant-available potassium and other topsoil attributes. Aust J Soil Res 37:267-77 CrossRef
    68. Wong MTF, Asseng S, Oliver Y (2008) Mapping subsoil acidity and shallow soil across a field with information from yield maps, geophysical sensing and the grower. Precision Agric 9:3-5 CrossRef
  • 作者单位:Daniel Altdorff (1) (3)
    Jannis Epting (2)
    Jan van der Kruk (3)
    Peter Dietrich (1)
    Peter Huggenberger (2)

    1. Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
    3. Institute of Bio and Geosciences 3, Forschungszentrum Jülich, Jülich, Germany
    2. Applied and Environmental Geology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
  • ISSN:1866-6299
文摘
River management and restoration measures are of increasing importance for integrated water resources management (IWRM) as well as for ecosystem services. However, often river management mainly considers engineering and construction aspects only and the hydrogeological settings as the properties and functions of ancient fluvial systems are neglected which often do not lead to the desired outcome. Knowledge of the distribution of sediment units could contribute to a more efficient restoration. In this study, we present two noninvasive approaches for delineation of fluvial sediment architecture that can form a basis for the restoration, particularly in areas where site disturbance is not permitted. We investigate the floodplain of a heavily modified low-mountain river in Switzerland using different hydrogeophysical methods. In the first approach, we use data from electromagnetic induction (EMI) with four different integral depths (0.75-?m) and gamma-spectrometry as well as the elevation data as input for a K-means cluster algorithm. The generated cluster map of the surface combines the main characteristics from multilayered input data and delineates areas of varying soil properties. The resulting map provides an indication of areas with different sedimentary units. In the second approach, we develop a new iterative method for the generation of a geological structure model (GSM) by means of various EMI forward models. We vary the geological input parameters based on the measured data until the predicted EMI maps match the measured EMI values. Subsequently, we use the best matched input data for the GSM generation. The derived GSM provides a 3D delineation of possible ancient stream courses. A comparison with an independent ground penetrating radar (GPR) profile confirmed the delineations on the cluster map as well as the vertical changes of the GSM qualitatively. Thus, each of the approaches had the capacity for detecting sedimentary units with distinct hydraulic properties as an indication of former stream courses. The developed methodology presents a promising tool for the characterization of test sites with no additional subsurface information.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700