Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins
详细信息    查看全文
  • 作者:Fred McMahon ; Nessa Banville ; David A. Bergin ; Christian Smedman…
  • 关键词:Bacillus ; Demodex ; inflammation ; neutrophils ; rosacea
  • 刊名:Inflammation
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:39
  • 期:1
  • 页码:425-433
  • 全文大小:892 KB
  • 参考文献:1.Powell, F.C. 2005. Rosacea. New England Journal of Medicine 352: 793–803.CrossRef PubMed
    2.Holmes, A.D. 2013. Potential role of microorganisms in the pathogenesis of rosacea. Journal of American Academy of Dermatology 69: 1025–32.CrossRef
    3.Jarmuda, S., N. O'Reilly, R. Zaba, O. Jakubowicz, A. Szkaradkiewicz, and K. Kavanagh. 2012. The potential role of Demodex folliculorum mites and bacteria in the induction of rosacea. Journal of Medical Microbiology 61: 1504–10.CrossRef PubMed
    4.Wilkin, J., M. Dahl, M. Detmar, L. Drake, A. Feinstein, R. Odom, and F. Powell. 2002. Standard classification of rosacea: Report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. Journal of American Academy of Dermatology 46: 584–87.CrossRef
    5.Crawford, G.H., M.T. Pelle, and W.D. James. 2004. Rosacea: I. Etiology, pathogenesis, and subtype classification. Journal of American Academy of Dermatology 51: 327–41.CrossRef
    6.Gupta, A.K., and M.M. Chaudhry. 2005. Rosacea and its management: an overview. Journal of the European Academy of Dermatology and Venereology 19: 273–85.CrossRef PubMed
    7.Pelle, M.T., G.H. Crawford, and W.D. James. 2004. Rosacea: II. Therapy. Journal of American Academy of Dermatology 51: 499–512.CrossRef
    8.Yamasaki, K., and R.L. Gallo. 2009. The molecular pathology of rosacea. Journal of Dermatological Science 55: 77–81.PubMedCentral CrossRef PubMed
    9.Akamatsu, H., M. Oguchi, S. Nishijima, Y. Asada, M. Takashi, T. Ushijima, and Y. Niwa. 1990. The inhibition of free radical generation by human neutrophils through the synergistic effect of metronidazole with palmitoleic acid: a possible mechanism of metronidazole in rosacea and acne. Archives of Dermatological Research 282: 449–54.CrossRef PubMed
    10.Miyashi, Y., A. Yoshioka, S. Imamura, and Y. Niwa. 1986. Effect of antibiotics on the generation of reactive oxygen species. Journal of Investigative Dermatology 86: 449–53.CrossRef
    11.Yoshioka, A., Y. Miyachi, S. Imamura, and Y. Niwa. 1986. Anti-oxidant effects of retinoids on inflammatory skin diseases. Archives of Dermatological Research 278: 177–83.CrossRef PubMed
    12.Starkey, P.M., A.J. Barrett, and M.C. Burleigh. 1977. The degradation of articular collagen by neutrophil proteinases. Biochimica et Biophysica Acta 483: 386–97.CrossRef PubMed
    13.Berton, A., G. Godeau, H. Emonard, K. Baba, P. Bellon, W. Hornebeck, and G. Bellon. 2000. Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biology 19: 139–148.CrossRef PubMed
    14.Devaney, J.M., C.M. Greene, C.C. Taggart, T.P. Carroll, S.J. O’Neill, and N.G. McElvaney. 2003. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Letters 544: 129–132.CrossRef PubMed
    15.Kuwahara, I., E.P. Lillehoj, W. Lu, I.S. Singh, Y. Isohama, T. Miyata, and K.C. Kim. 2006. Neutrophil elastase induces IL-8 gene transcription and protein release through p38/NF-κB activation via EGFR trans-activation in a lung epithelial cell line. American Journal of Physiology. Lung Cellular and Molecular Physiology 291: 407–416.CrossRef
    16.Tintinger, G., H.C. Steel, and R. Anderson. 2005. Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clinical Experimental Immunology 141: 191–200.PubMedCentral CrossRef PubMed
    17.Bokoch, G.M. 1995. Chemoattractant signaling and leukocyte activation. Blood 86: 1649–1660.PubMed
    18.Binah, O., M. Shilkrut, G. Yaniv, and S. Larisch. 2004. The Fas receptor 1,4,5-IP3 cascade: a potential target for treating heart failure and arrhythmias. Annals of the New York Academy of Science 1015: 338–350.CrossRef
    19.Wacker, M.J., L.M. Kosloski, W.J.R. Gilbert, C.D. Touchberry, D.S. Moore, J.K. Kelly, M. Brotto, and J.A. Orr. 2009. Inhibition of thromboxane A2-induced arrhythmias and intracellular calcium changes in cardiac myocytes by blockade of the inositol trisphosphate pathway. Journal of Pharmacological and Experimental Therapeutics 331: 917–924.CrossRef
    20.Vance, J. 1986. Demodicidosis – Do Demodex mites cause Disease? Current Concepts in Skin Disorder 10–18.
    21.Bonner, E., P. Eustace, and F.C. Powell. 1993. The Demodex mite population in Rosacea. Journal of American Academy of Dermatology 28: 443–448.CrossRef
    22.Erbağci, Z., and O. Ozgöztaşi. 1998. The significance of Demodex folliculorum density in rosacea. International Journal of Dermatology 37: 421–425.CrossRef PubMed
    23.Ni Raghallaigh, S., K. Bender, N. Lacey, L. Brennan, and F.C. Powell. 2012. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. British Journal of Dermatology 166: 279–287.CrossRef PubMed
    24.Dahl, M.V., A.J. Ross, and P.M. Schlievert. 2004. Temperature regulates bacterial protein production: possible role in rosacea. Journal of American Academy of Dermatology 50: 266–272.CrossRef
    25.Lacey, N., S. Delaney, K. Kavanagh, and F.C. Powell. 2007. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. British Journal of Dermatology 157: 474–481.CrossRef PubMed
    26.Whitfeld, M., N. Gunasingam, L. Joo Leow, K. Shirato, and V. Preda. 2011. Staphylococcus epidermidis: a possible role in the pustules of rosacea. Journal of American Academy of Dermatology 64: 49–52.CrossRef
    27.Kuhnigk, T., E.M. Borst, A. Breunig, H. König, M.D. Collins, R.A. Hutson, and P. Kämpfer. 1995. Bacillus oleronius sp. nov., a member of the hind-gut flora of the termite Reticulitermes santonensis (Feytaud). Canadian Journal of Microbiology 41: 699–706.CrossRef PubMed
    28.Szkaradkiewicz, A., I. Chudzicka-Strugała, T.M. Karpiński, O. Goślińska-Pawłowska, T. Tułecka, W. Chudzicki, A.K. Szkaradkiewicz, and R. Zaba. 2012. Bacillus oleronius and Demodex mite infestation in patients with chronic blepharitis. Clinical Microbiology and Infection 18: 1020–1025.CrossRef PubMed
    29.Li, J., N. O'Reilly, H. Sheha, R. Katz, V.K. Raju, K. Kavanagh, and S.C. Tseng. 2010. Correlation between ocular Demodex infestation and serum immunoreactivity to Bacillus microbial proteins in patients with facial rosacea. Ophthalmology 117: 870–877.PubMedCentral CrossRef PubMed
    30.O’Reilly, N., N. Menezes, and K. Kavanagh. 2012. Positive correlation between serum immuno-reactivity to Demodex-associated Bacillus proteins and erythematotelangiectic rosacea. British Journal of Dermatology 167: 1032–1036.CrossRef PubMed
    31.Jarmuda, S., F. McMahon, R. Zaba, N. O’Reilly, O. Jakubowicz, A. Holland, A. Szkaradkiewicz, and K. Kavanagh. 2014. Correlation between serum reactivity to Demodex-associated Bacillus oleronius proteins, and altered sebum levels and Demodex populations in erythematotelangiectatic rosacea patients. Journal of Medical Microbiology 63: 258–262.CrossRef PubMed
    32.O’Reilly, N., C. Gallagher, K.R. Katikireddy, M. Clynes, F. O’Sullivan, and K. Kavanagh. 2012. Demodex-associated Bacillus proteins induce an aberrant wound healing response in a corneal epithelial cell line (hTCEpi): possible implications for corneal ulcer formation in ocular rosacea. Investigative Ophthalmology and Visual Science 53: 3250–3259.CrossRef PubMed
    33.McMahon, F.W., C. Gallagher, N. O’Reilly, M. Clynes, F. O’Sullivan, and K. Kavanagh. 2014. Exposure of a corneal epithelial cell line (hTCEpi) to Demodex-associated Bacillus proteins results in an inflammatory response. Investigative Ophthalmology and Visual Science 55: 7019–7028.CrossRef PubMed
    34.O’Reilly, N., D. Bergin, E.P. Reeves, N.G. McElvaney, and K. Kavanagh. 2012. Demodex-associated bacterial proteins induce neutrophil activation. British Journal of Dermatology 166: 753–760.CrossRef PubMed
    35.Reeves, E.P., H. Lu, H.L. Jacobs, C.G. Messina, S. Bolsover, G. Gabella, E.O. Potma, A. Warley, J. Roes, and A.W. Segal. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291–297.CrossRef PubMed
    36.Eichner, R.D., M. Al Salami, P.R. Wood, and A. Müllbacher. 1986. The effect of gliotoxin upon macrophage function. International Journal of Immunopharmacology 8: 789–797.CrossRef PubMed
    37.Jayachandran, R., V. Sundaramurthy, B. Combaluzier, P. Mueller, H. Korf, K. Huygen, T. Miyazaki, I. Albrecht, J. Massner, and J. Pieters. 2007. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130: 37–50.CrossRef PubMed
    38.Rossi, F. 1986. The O2-forming NADPH oxidase of the phagocytes: Nature, mechanisms of activation and function. Biochimica et Biophysica Acta 853: 65–89.CrossRef PubMed
    39.Lew, P.D. 1990. Receptors and intracellular signaling in human neutrophils. The American Review of Respiratory Disease 141: S127–131.CrossRef PubMed
    40.Billah, M.M. 1993. Phospholipase D and cell signaling. Current Opinions in Immunology 5: 114–123.CrossRef
    41.Thelen, M., and U. Wirthmueller. 1994. Phospholipases and protein kinases during phagocyte activation. Current Opinions in Immunology 6: 106–112.CrossRef
    42.Pollard, T.D., and J.A. Cooper. 2009. Actin, a central player in cell shape and movement. Science 326: 1208–1212.PubMedCentral CrossRef PubMed
    43.Brink, N., M. Szamel, A.R. Young, K.P. Wittern, and J. Bergemann. 2000. Comparative quantification of IL-1beta, IL-10, IL-10r, TNFalpha and IL-7 mRNA levels in UV-irradiated human skin in vivo. Inflammation Research 49: 290–296.CrossRef PubMed
    44.Grossman, R.M., J. Krueger, D. Yourish, A. Granelli-Piperno, D.P. Murphy, L.T. May, T.S. Kupper, P.B. Sehgal, and A.B. Gottlieb. 1989. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proceedings of the National Academy of Science of the USA 86: 6367–6371.CrossRef
    45.Aylesworth, R., and J.C. Vance. 1982. Demodex folliculorum and Demodex brevis in cutaneous biopsies. Journal of American Academy of Dermatology 7: 583–589.CrossRef
    46.Akilov, O.E., and K.Y. Mumcuoglu. 2003. Association between human demodicosis and HLA class I. Clinical and Experimental Dermatology 28: 70–73.CrossRef PubMed
    47.Casas, C., C. Paul, M. Lahfa, B. Livideanu, O. Lejeune, S. Alvarez-Georges, C. Saint-Martory, A. Degouy, V. Mengeaud, H. Ginisty, E. Durbise, A.M. Schmitt, and D. Redoulès. 2012. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Experimental Dermatology 21: 906–910.CrossRef PubMed
    48.Grice, E.A., and J.A. Segre. 2011. The skin microbiome. Nature Reviews Microbiology 9: 244–253.PubMedCentral CrossRef PubMed
    49.Leyden, J.J., K.J. McGinley, O.H. Mills, and A.M. Kligman. 1975. Propionibacterium levels in patients with and without acne vulgaris. Journal of Investigative Dermatology 65: 382–384.CrossRef PubMed
    50.Somerville, D.A. 1969. The normal flora of the skin in different age groups. British Journal of Dermatology 81: 248–258.CrossRef PubMed
    51.Murillo, N., J. Aubert, and D. Raoult. 2014. Microbiota of Demodex mites from rosacea patients and controls. Microbial Pathogenesis 71–72: 37–40.CrossRef PubMed
    52.Putney, J.W. 2007. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42: 103–110.PubMedCentral CrossRef PubMed
    53.Berridge, M.J. 1995. Capacitative calcium entry. Biochemistry Journal 312: 1–11.CrossRef
    54.Taylor, C.W., P.C. da Fonseca, and E.P. Morris. 2004. IP3 receptors: the search for structure. Trends in Biochemical Science 29: 210–219.CrossRef
    55.Lawrence, T. 2009. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology 1(6): a001651.PubMedCentral CrossRef PubMed
    56.Mastrofrancesco, A., M. Ottaviani, N. Aspite, G. Cardinali, E. Izzo, K. Graupe, C.C. Zouboulis, E. Camera, and M. Picardo. 2010. Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARγ activation. Experimental Dermatology 19: 813–820.CrossRef PubMed
    57.Eishingdrelo, H., and S. Kongsamut. 2013. Minireview: targeting GPCR activated ERK pathways for drug discovery. Current Chemical Genomics and Translational Medicine 7: 9–15.PubMedCentral CrossRef PubMed
    58.Brown, K.M., and D.K. Tracy. 2013. Lithium: the pharmacodynamic actions of the amazing ion. Therapeutic Advances in Psychopharmacology 3: 163–176.PubMedCentral CrossRef PubMed
    59.Kliem, C., A. Merling, M. Giaisi, R. Köhler, P.H. Krammer, and M. Li-Weber. 2012. Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation. Journal of Biological Chemistry 287: 10200–10209.PubMedCentral CrossRef PubMed
    60.Galeotti, N., A. Bartolini, M. Calvani, R. Nicolai, and C. Ghelardini. 2004. Acetyl-L-carnitine requires phospholipase C-IP3 pathway activation to induce antinociception. Neuropharmacology 47: 286–294.CrossRef PubMed
  • 作者单位:Fred McMahon (1)
    Nessa Banville (2)
    David A. Bergin (2)
    Christian Smedman (3)
    Staffan Paulie (3)
    Emer Reeves (2)
    Kevin Kavanagh (1)

    1. Department of Biology, Maynooth University, Co. Kildare, Ireland
    2. Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
    3. Mabtech AB, Nacka Strand, Sweden
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Rheumatology
    Internal Medicine
    Pharmacology and Toxicology
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-2576
文摘
Rosacea is a chronic inflammatory condition that predominantly affects the skin of the face. Sera from rosacea patients display elevated reactivity to proteins from a bacterium (Bacillus oleronius) originally isolated from a Demodex mite from a rosacea patient suggesting a possible role for bacteria in the induction and persistence of this condition. This work investigated the ability of B. oleronius proteins to activate neutrophils and demonstrated activation via the IP3 pathway. Activated neutrophils displayed increased levels of IP1 production, F-actin formation, chemotaxis, and production of the pro-inflammatory cytokines IL-1β and IL-6 following stimulation by pure and crude B. oleronius protein preparations (2 μg/ml), respectively. In addition, neutrophils exposed to pure and crude B. oleronius proteins (2 μg/ml) demonstrated increased release of internally stored calcium (Ca2+), a hallmark of the IP3 pathway of neutrophil activation. Neutrophils play a significant role in the inflammation associated with rosacea, and this work demonstrates how B. oleronius proteins can induce neutrophil recruitment and activation. KEY WORDS Bacillus Demodex inflammation neutrophils rosacea

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700