High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED
详细信息    查看全文
  • 作者:Guan-Yu Wang (1)
    Tao Li (1)
    Fu-Guo Deng (1) (2)

    1. Department of Physics
    ; Applied Optics Beijing Area Major Laboratory ; Beijing Normal University ; Beijing ; 100875 ; China
    2. State Key Laboratory of Networking and Switching Technology
    ; Beijing University of Posts and Telecommunications ; Beijing ; 100876 ; China
  • 关键词:Entanglement concentration ; Quantum communication network ; Cavity quantum electrodynamics ; Two ; atom systems ; Low ; Q cavity
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:14
  • 期:4
  • 页码:1305-1320
  • 全文大小:648 KB
  • 参考文献:1. Bennett, CH, Brassard, G, Crepeau, C, Jozsa, R, Peres, A, Wootters, WK (1993) Teleporting an unknown quantum state via dual classical and Einstein鈥揚odolsky鈥揜osen channels. Phys. Rev. Lett. 70: pp. 1895-1899 CrossRef
    2. Bennett, CH, Wiesner, SJ (1992) Communication via one- and two-particle operators on Einstein鈥揚odolsky鈥揜osen states. Phys. Rev. Lett. 69: pp. 2881-2884 CrossRef
    3. Liu, XS, Long, GL, Tong, DM, Feng, L (2002) General scheme for superdense coding between multiparties. Phys. Rev. A 65: pp. 022304 CrossRef
    4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers. Systems and Signal Processing, Bangalore, India, pp. 175鈥?79. IEEE, New York (1984)
    5. Ekert, AK (1991) Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67: pp. 661-663 CrossRef
    6. Bennett, CH, Brassard, G, Mermin, ND (1992) Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68: pp. 557-559 CrossRef
    7. Long, GL, Liu, XS (2002) Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65: pp. 032302 CrossRef
    8. Deng, FG, Long, GL, Liu, XS (2003) Two-step quantum direct communication protocol using the Einstein鈥揚odolsky鈥揜osen pair block. Phys. Rev. A 68: pp. 042317 CrossRef
    9. Deng, FG, Long, GL (2004) Secure direct communication with a quantum one-time pad. Phys. Rev. A 69: pp. 052319 CrossRef
    10. Bennett, CH, Brassard, G, Popescu, S, Schumacher, B, Smolin, JA, Wootters, WK (1996) Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76: pp. 722-725 CrossRef
    11. Pan, JW, Simon, C, Zellinger, A (2001) Entanglement purification for quantum communication. Nature 410: pp. 1067-1070 CrossRef
    12. Simon, C, Pan, JW (2002) Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89: pp. 257901 CrossRef
    13. Sheng, YB, Deng, FG (2010) Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81: pp. 032307 CrossRef
    14. Sheng, YB, Deng, FG (2010) One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82: pp. 044305 CrossRef
    15. Ren, BC, Du, FF, Deng, FG (2014) Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90: pp. 052309 CrossRef
    16. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
    17. Bose, S, Vderal, V, Knilight, PL (1999) Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60: pp. 60 CrossRef
    18. Shi, BS, Jiang, YK, Guo, GC (2000) Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62: pp. 054301 CrossRef
    19. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)
    20. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)
    21. Sheng, YB, Deng, FG, Zhou, HY (2008) Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77: pp. 062305 CrossRef
    22. Ren, BC, Du, FF, Deng, FG (2013) Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88: pp. 012302 CrossRef
    23. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)
    24. Deng, FG (2012) Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85: pp. 022311 CrossRef
    25. Ren, BC, Long, GL (2014) General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22: pp. 6547-6561 CrossRef
    26. Sheng, YB, Zhou, L, Zhao, SM (2012) Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85: pp. 042302 CrossRef
    27. Gu, B (2012) Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J. Opt. Soc. Am. B 29: pp. 1685-1689 CrossRef
    28. Wang, HF, Zhang, S, Yeon, KH (2010) Linear optical scheme for entanglement concentration of two partially entangled three photon W states. Eur. Phys. J. D 56: pp. 271-275 CrossRef
    29. Wang, HF, Zhang, S, Yeon, KH (2010) Linear-optics-based entanglement concentration of unknown partially entangled threephoton W states. J. Opt. Soc. Am. B 27: pp. 2159-2164 CrossRef
    30. Xiong, W, Ye, L (2011) Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28: pp. 2030-2037 CrossRef
    31. Sun, LL, Wang, HF, Zhang, S, Yeon, KH (2012) Entanglement concentration of partially entangled threephoton W states with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29: pp. 630-634 CrossRef
    32. Gu, B, Quan, DH, Xiao, SR (2012) Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement. Int. J. Theor. Phys. 51: pp. 2966-2973 CrossRef
    33. Wang, TJ, Long, GL (2013) Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. J. Opt. Soc. Am. B 30: pp. 1069-1076 CrossRef
    34. Zhou, L (2013) Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12: pp. 2087-2101 CrossRef
    35. Sheng, YB, Zhou, L (2013) Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30: pp. 678-686 CrossRef
    36. Sheng, YB, Zhou, L (2013) Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15: pp. 1776-1820 CrossRef
    37. Xu, TT, Xiong, W, Ye, L (2012) Concentrating arbitrary four-photon less-entangled cluster state by single photons. Mod. Phys. Lett. B 26: pp. 1250214 CrossRef
    38. Si, B, Su, SL, Sun, LL, Cheng, LY, Wang, HF, Zhang, S (2013) Efficient three-step entanglement concentration for an arbitrary four-photon cluster state. Chin. Phys. B 22: pp. 030305 CrossRef
    39. Sheng, YB, Zhou, L, Wang, L, Zhao, SM (2013) Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12: pp. 1885-1895 CrossRef
    40. Zhao, SY, Liu, J, Zhou, L, Sheng, YB (2013) Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12: pp. 3633-3647 CrossRef
    41. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China-Phys. Mech. Astron. 58, 040303 (2015)
    42. Yang, M, Zhao, Y, Song, W, Cao, ZL (2005) Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71: pp. 044302 CrossRef
    43. Cao, Z.L., Zhang, L.H., Yang, M.: Concentration for unknown atomic entangled states via cavity decay. Phys. Rev. A 73, 014303 (2006)
    44. Oyden, C.D., Paternostro, M., Kim, M.S.: Concentration and purification of entanglement for qubit systems with ancillary cavity field. Phys. Rev. A 75, 042325 (2007)
    45. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)
    46. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)
    47. Peng, ZH, Zou, J, Liu, XJ, Xiao, YJ, Kuang, LM (2012) Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86: pp. 034305 CrossRef
    48. Cao, C, Wang, C, He, LY, Zhang, R (2013) Atomic entanglement purification and concentration using coherent state input鈥搊utput process in low-Q cavity QED regime. Opt. Express 21: pp. 4093 CrossRef
    49. Li, T, Yang, GJ, Deng, FG (2014) Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22: pp. 23897-23911 CrossRef
    50. Walls, DF, Milburn, GJ (1994) Quantum Optics. Springer, Berlin CrossRef
    51. Raimond, JM, Brune, M, Haroche, S (2001) Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73: pp. 565 CrossRef
    52. Osnaghi, S, Bertet, P, Auffeves, A, Maioli, P, Brune, M, Raimond, JM, Haroche, S (2001) Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87: pp. 037902 CrossRef
    53. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)
    54. Birnbaum, KM, Boca, A, Miller, R, Boozer, AD, Northup, TE, Kimble, HJ (2005) Photon blockade in an optical cavity with on trapped atom. Nature (London) 436: pp. 87 CrossRef
    55. Cho, J., Lee, H.W.: Generation of atomic atomic cluster states through the cavity input鈥搊utput process. Phys. Rev. Lett. 95, 160501 (2005)
    56. Beugnon, J, Jones, MPA, Dingjan, J, Darqui, B, Messin, G, Browaeys, A, Grangier, P (2006) Quantum interference between two single photons emitted by independently trapped atoms. Nature (London) 440: pp. 779-782 CrossRef
    57. Hijlkema, H, Weber, B, Specht, HP, Webster, SC, Kuhn, A, Gerhard, R (2007) A single-photon server with just one atom. Nat. Phys. 3: pp. 253-255 CrossRef
    58. Wilk, T, Webster, SC, Kuhn, A, Rempe, G (2007) Single-atom single-photon quantum interface. Science 317: pp. 488-490 CrossRef
    59. Hu, CY, Young, A, Obrien, JL, Munro, WJ, Rarity, JG (2008) Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78: pp. 085307 CrossRef
    60. Reiserer, A, Ritter, S, Rempe, G (2013) Nondestructive detection of an optical photon. Science 342: pp. 1349 CrossRef
    61. Tiecke, TG, Thompson, JD, Leon, NP, Liu, LR, Vuletic, V, Lukin, MD (2014) Nanophotonic quantum phase switch with a single atom. Nature 508: pp. 241-244 CrossRef
    62. An, JH, Feng, M, Oh, CH (2009) Quantum-information processing with a single photon by an input鈥搊utput process with respect to low-Q cavities. Phys. Rev. A 79: pp. 032303 CrossRef
    63. Wang, TJ, Song, SY, Long, GL (2012) Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85: pp. 062311 CrossRef
    64. Dayan, B., Parkins, A.S., Takao, Aoki, Ostby, E.P., Vahala, K.J., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
Quantum entanglement is the key resource in quantum information processing, especially in quantum communication network. However, affected by the environment noise, the maximally entangled states usually collapse into nonmaximally entangled ones or even mixed states. Here we present two high-efficiency schemes to complete the entanglement concentration of nonlocal two-atom systems. Our first scheme is used to concentrate the nonlocal atomic systems in the partially entangled states with known parameters, and it has the optimal success probability. The second scheme is used to concentrate the entanglement of the nonlocal two-atom systems in the partially entangled states with unknown parameters. Compared with the other schemes for the entanglement concentration of atomic systems, our two protocols are more efficient and practical. They require only an ancillary single photon to judge whether they succeed or not, and they work in a heralded way with detection inefficiency and absence of sophisticated single-photon detectors in practical applications. Moreover, they are insensitive to both the cavity decay and atomic spontaneous emission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700