Toxicity on Dengue Mosquito Vectors Through m class="a-plus-plus">Myristica fragransm>-Synthesized Zinc Oxide Nanorods, and Their Cytotoxic Effects on Liver Cancer Cells (HepG2)
详细信息    查看全文
文摘
Dengue is an arbovirus mainly vectored by Aedes mosquitoes. Its prevention and control depends to effective vector control measures. Cancer causes millions of death every year. Most of the anticancer drugs have high toxicity and low specificity of action, leading to systemic toxicity and severe side effects. Thus, the development of effective tools is a priority. We fabricated zinc oxide nanoparticles using the Myristica fragrans extract as a reducing and stabilizing agent. Nanoparticles were studied using UV–vis spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, zeta potential, dynamic light scattering, energy dispersive X-ray analysis, field emission scanning electron microscopy and transmission electron microscopy. ZnO nanorods were highly effective against A. aegypti young instars, with LC50 ranging from 3.44 (larva I) to 14.63 ppm (pupa). Nanorods showed adult LC50 of 15.004 ppm. ZnO nanorods exhibited dose-dependent cytotoxicity against human hepato-cancer cells (HepG2). After 48 and 24 h of incubation, the IC50 were 20 and 22 μg/ml, respectively. Nanorods triggered the induction of apoptosis. Overall, this study highlights that the possibility to employ M. fragrans-synthesized ZnO nanorods in mosquito control, as well as in the development of novel chemotherapeutic agents with reduced systemic toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700