Study of the effect of the molecular architecture of the components on the melt rheological properties of polyethylene blends
详细信息    查看全文
文摘
The influence of the molecular architecture of linear low-density polyethylene on melt miscibility with low-density polyethylene was investigated. Different LLDPE resins with variable type and content of branches were blended at a given composition with the same LDPE. The rheology and different data-treatment methods based on mixture models suggest that the melt blend morphology is strongly dependent on the molecular architecture of the matrix, particularly on the amount of short chain branches. The properties of the blends in which the LLDPE sample possesses a high content of branches can be predicted by the miscible blend additivity rule. The blends in which the LLDPE had the lowest branch content were completely immiscible. In these cases the rheological properties showed values that are higher than expected for miscible blends, as predicted by the Palierne model. The molar mass and the type of comomomer in LLDPE do not play an important role in the melt morphology of the blends at the composition studied. Thus the level of branching in LLDPE is revealed as the molecular feature with the strongest influence on melt miscibility with LDPE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700