Systems biology approaches for advancing the discovery of effective drug combinations
详细信息    查看全文
  • 作者:Karen A Ryall (1)
    Aik Choon Tan (1) (2) (3)

    1. Translational Bioinformatics and Cancer Systems Biology Laboratory
    ; Division of Medical Oncology ; Department of Medicine ; School of Medicine ; University of Colorado Anschutz Medical Campus ; 12801 E.17th Ave. ; L18-8116 ; Aurora ; CO ; 80045 ; USA
    2. Department of Biostatistics and Informatics
    ; Colorado School of Public Health ; University of Colorado Anschutz Medical Campus ; Aurora ; CO ; USA
    3. Department of Computer Science and Engineering
    ; Korea University ; Seoul ; South Korea
  • 关键词:Drug combinations ; Systems biology ; Computational modeling ; Cancer ; Drug discovery
  • 刊名:Journal of Cheminformatics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:7
  • 期:1
  • 全文大小:1,157 KB
  • 参考文献:1. Pammolli, F, Magazzini, L, Riccaboni, M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10: pp. 428-38 CrossRef
    2. Hopkins, AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4: pp. 682-90 118" target="_blank" title="It opens in new window">CrossRef
    3. Sams-Dodd, F (2005) Target-based drug discovery: is something wrong?. Drug Discov Today 10: pp. 139-47 CrossRef
    4. Heineke, J, Molkentin, JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7: pp. 589-600 CrossRef
    5. Breitkreutz, D, Hlatky, L, Rietman, E, Tuszynski, JA (2012) Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci U S A 109: pp. 9209-12 CrossRef
    6. Kitano, H (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4: pp. 227-35 CrossRef
    7. Albert, R, Jeong, H, Barabasi, AL (2000) Error and attack tolerance of complex networks. Nature 406: pp. 378-82 CrossRef
    8. Lusis, AJ, Weiss, JN (2010) Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation 121: pp. 157-70 1161/CIRCULATIONAHA.108.847699" target="_blank" title="It opens in new window">CrossRef
    9. Berger, SI, Iyengar, R (2009) Network analyses in systems pharmacology. Bioinformatics 25: pp. 2466-72 CrossRef
    10. Glickman, MS, Sawyers, CL (2012) Converting cancer therapies into cures: lessons from infectious diseases. Cell 148: pp. 1089-98 CrossRef
    11. Gorre, ME, Mohammed, M, Ellwood, K, Hsu, N, Paquette, R, Rao, N (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: pp. 876-80 1126/science.1062538" target="_blank" title="It opens in new window">CrossRef
    12. Engelman, JA, Zejnullahu, K, Mitsudomi, T, Song, Y, Hyland, C, Park, JO (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: pp. 1039-43 1126/science.1141478" target="_blank" title="It opens in new window">CrossRef
    13. Sharma, SV, Lee, DY, Li, B, Quinlan, MP, Takahashi, F, Maheswaran, S (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141: pp. 69-80 CrossRef
    14. Weinstein, IB, Joe, A (2008) Oncogene addiction. Cancer Res 68: pp. 3077-80 1158/0008-5472.CAN-07-3293" target="_blank" title="It opens in new window">CrossRef
    15. Sun, X, Vilar, S, Tatonetti, NP (2013) High-throughput methods for combinatorial drug discovery. Sci Transl Med 5: pp. 205rv1 1126/scitranslmed.3006667" target="_blank" title="It opens in new window">CrossRef
    16. Tang, J, Aittokallio, T (2014) Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des 20: pp. 23-36 113199990470" target="_blank" title="It opens in new window">CrossRef
    17. Fitzgerald, JB, Schoeberl, B, Nielsen, UB, Sorger, PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2: pp. 458-66 CrossRef
    18. Chou, T, Talalay, P (1983) Analysis of combined drug effects: a new look at a very old problem. Trends Pharmacol Sci 4: pp. 450-4 CrossRef
    19. Keith, CT, Borisy, AA, Stockwell, BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4: pp. 71-8 CrossRef
    20. Goldoni, M, Johansson, C (2007) A mathematical approach to study combined effects of toxicants in vitro: evaluation of the Bliss independence criterion and the Loewe additivity model. Toxicol In Vitro 21: pp. 759-69 CrossRef
    21. Kreeger, PK, Lauffenburger, DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31: pp. 2-8 CrossRef
    22. Klipp, E, Liebermeister, W (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7: pp. S10 1186/1471-2202-7-S1-S10" target="_blank" title="It opens in new window">CrossRef
    23. Schoeberl, B, Eichler-Jonsson, C, Gilles, ED, M眉ller, G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20: pp. 370-5 CrossRef
    24. Chen, WW, Schoeberl, B, Jasper, PJ, Niepel, M, Nielsen, UB, Lauffenburger, DA (2009) Input鈥搊utput behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5: pp. 239
    25. Iadevaia, S, Lu, Y, Morales, FC, Mills, GB, Ram, PT (2010) Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 70: pp. 6704-14 1158/0008-5472.CAN-10-0460" target="_blank" title="It opens in new window">CrossRef
    26. Faratian, D, Goltsov, A, Lebedeva, G, Sorokin, A, Moodie, S, Mullen, P (2009) Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 69: pp. 6713-20 1158/0008-5472.CAN-09-0777" target="_blank" title="It opens in new window">CrossRef
    27. Schoeberl, B, Pace, EA, Fitzgerald, JB, Harms, BD, Xu, L, Nie, L (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2: pp. ra31 1126/scisignal.2000352" target="_blank" title="It opens in new window">CrossRef
    28. Papin, JA, Palsson, BO (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol 227: pp. 283-97 11.016" target="_blank" title="It opens in new window">CrossRef
    29. Morris, MK, Saez-Rodriguez, J, Sorger, PK, Lauffenburger, DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49: pp. 3216-24 CrossRef
    30. Sahin, O, Fr枚hlich, H, L枚bke, C, Korf, U, Burmester, S, Majety, M (2009) Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 3: pp. 1 1186/1752-0509-3-1" target="_blank" title="It opens in new window">CrossRef
    31. Zhang, R, Shah, MV, Yang, J, Shah, MV, Yang, J, Nyland, SB (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U S A 105: pp. 16308-13 CrossRef
    32. Aldridge, BB, Saez-Rodriguez, J, Muhlich, JL, Sorger, PK, Lauffenburger, DA (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol 5: pp. e1000340 CrossRef
    33. Kraeutler, MJ, Soltis, AR, Saucerman, JJ (2010) Modeling cardiac beta-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC Syst Biol 4: pp. 157 1186/1752-0509-4-157" target="_blank" title="It opens in new window">CrossRef
    34. Saucerman, JJ, Brunton, LL, Michailova, AP, McCulloch, AD (2003) Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 278: pp. 47997-8003 CrossRef
    35. Ryall, KA, Holland, DO, Delaney, KA, Kraeutler, MJ, Parker, AJ, Saucerman, JJ (2012) Network reconstruction and systems analysis of cardiac myocyte hypertrophy signaling. J Biol Chem 287: pp. 42259-68 112.382937" target="_blank" title="It opens in new window">CrossRef
    36. Molkentin, JD, Dorn, GW (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63: pp. 391-426 1146/annurev.physiol.63.1.391" target="_blank" title="It opens in new window">CrossRef
    37. Kestler, HA, Wawra, C, Kracher, B, K眉hl, M (2008) Network modeling of signal transduction: establishing the global view. Bioessays 30: pp. 1110-25 CrossRef
    38. Alon, U (2003) Biological networks: the tinkerer as an engineer. Science 301: pp. 1866-7 1126/science.1089072" target="_blank" title="It opens in new window">CrossRef
    39. Alon, U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8: pp. 450-61 CrossRef
    40. Pelaez, N, Carthew, RW (2012) Biological robustness and the role of microRNAs: a network perspective. Curr Top Dev Biol 99: pp. 237-55 CrossRef
    41. Yin, N, Ma, W, Pei, J, Ouyang, Q, Tang, C, Lai, L (2014) Synergistic and antagonistic drug combinations depend on network topology. PLoS One 9: pp. e93960 CrossRef
    42. Zhang, Y, Smolen, P, Baxter, DA, Byrne, JH (2014) Computational analyses of synergism in small molecular network motifs. PLoS Comput Biol 10: pp. e1003524 CrossRef
    43. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: pp. 2498-504 1101/gr.1239303" target="_blank" title="It opens in new window">CrossRef
    44. Ferro, A, Giugno, R, Pigola, G, Pulvirenti, A, Skripin, D, Bader, GD (2007) NetMatch: a Cytoscape plugin for searching biological networks. Bioinformatics 23: pp. 910-2 CrossRef
    45. Ryall, KA, Bezzerides, VJ, Rosenzweig, A, Saucerman, JJ (2014) Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. J Mol Cell Cardiol 72: pp. 74-84 CrossRef
    46. Yedidia, JS, Freeman, WT, Weiss, Y (2002) Understanding belief propagation and its generalizations. Exploring Artificial Intelligence in the New Millennium. pp. 239-69
    47. Molinelli, EJ, Korkut, A, Wang, W, Miller, ML, Gauthier, NP, Jing, X (2013) Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol 9: pp. e1003290 CrossRef
    48. Sachs, K, Perez, O, Pe鈥檈r, D, Lauffenburger, DA, Nolan, GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308: pp. 523-9 1126/science.1105809" target="_blank" title="It opens in new window">CrossRef
    49. Lamb, J, Crawford, ED, Peck, D, Modell, JW, Blat, IC, Wrobel, MJ (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: pp. 1929-35 1126/science.1132939" target="_blank" title="It opens in new window">CrossRef
    50. Qu, XA, Rajpal, DK (2012) Applications of connectivity map in drug discovery and development. Drug Discov Today 17: pp. 1289-98 CrossRef
    51. Hieronymus, H, Lamb, J, Ross, KN, Peng, XP, Clement, C, Rodina, A (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10: pp. 321-30 CrossRef
    52. Wei, G, Twomey, D, Lamb, J, Schlis, K, Agarwal, J, Stam, RW (2006) Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10: pp. 331-42 CrossRef
    53. Edgar, R, Domrachev, M, Lash, AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: pp. 207-10 CrossRef
    54. Sirota, M, Dudley, JT, Kim, J, Chiang, AP, Morgan, A, Sweet-Cordero, A (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Trans Med 3: pp. 96ra77 1126/scitranslmed.3001318" target="_blank" title="It opens in new window">CrossRef
    55. Riedel, RF, Porrello, A, Pontzer, E, Chenette, EJ, Hsu, DS, Balakumaran, B (2012) A genomic approach to identify molecular pathways associated with chemotherapy resistance. Mol Cancer Ther 11: pp. 1214-5 1158/1535-7163.MCT-12-0210" target="_blank" title="It opens in new window">CrossRef
    56. Kim, J, Yoo, M, Kang, J, Tan, AC (2013) K-Map: connecting kinases with therapeutics for drug repurposing and development. Hum Genomics 7: pp. 20 1186/1479-7364-7-20" target="_blank" title="It opens in new window">CrossRef
    57. Kim, J, Vasu, VT, Mishra, R, Singleton, KR, Yoo, M, Leach, SM (2014) Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy. Bioinformatics 30: pp. 2393-8 CrossRef
    58. Pal R, Berlow N. A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs. Pac Symp Biocomput. 2012;351鈥?2.
    59. Berlow, N, Davis, LE, Cantor, EL, S茅guin, B, Keller, C, Pal, R (2013) A new approach for prediction of tumor sensitivity to targeted drugs based on functional data. BMC Bioinformatics 14: pp. 239 1186/1471-2105-14-239" target="_blank" title="It opens in new window">CrossRef
    60. Tang, J, Karhinen, L, Xu, T, Szwajda, A, Yadav, B, Wennerberg, K (2013) Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways. PLoS Comput Biol 9: pp. e1003226 CrossRef
    61. Gujral, TS, Peshkin, L, Kirschner, MW (2014) Exploiting polypharmacology for drug target deconvolution. Proc Natl Acad Sci U S A 111: pp. 5048-53 111" target="_blank" title="It opens in new window">CrossRef
    62. Huang, L, Li, F, Sheng, J, Xia, X, Ma, J, Zhan, M (2014) DrugComboRanker: drug combination discovery based on target network analysis. Bioinformatics 30: pp. i228-36 CrossRef
    63. Pang, K, Wan, Y, Choi, WT, Donehower, LA, Sun, J, Pant, D (2014) Combinatorial therapy discovery using mixed integer linear programming. Bioinformatics 30: pp. 1456-63 CrossRef
    64. Liu, Y, Hu, B, Fu, C, Chen, X (2010) DCDB: drug combination database. Bioinformatics 26: pp. 587-8 CrossRef
    65. Xu, KJ, Song, J, Zhao, XM (2012) The drug cocktail network. BMC Syst Biol 6: pp. S5 1186/1752-0509-6-S1-S5" target="_blank" title="It opens in new window">CrossRef
    66. Cheng, F, Zhao, Z (2014) Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inf Assoc 21: pp. e278-86 1136/amiajnl-2013-002512" target="_blank" title="It opens in new window">CrossRef
    67. Iorns, E, Lord, CJ, Turner, N, Ashworth, A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6: pp. 556-68 CrossRef
    68. Berns, K, Horlings, HM, Hennessy, BT, Madiredjo, M, Hijmans, EM, Beelen, K (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: pp. 395-402 CrossRef
    69. Prahallad, A, Sun, C, Huang, S, Nicolantonio, FD, Salazar, R, Zecchin, D (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483: pp. 100-3 CrossRef
    70. Pritchard, JR, Bruno, PM, Gilbert, LA, Capron, KL, Lauffenburger, DA, Hemann, MT (2012) Defining principles of combination drug mechanisms of action. Proc Natl Acad Sci U S A 110: pp. E170-9 110" target="_blank" title="It opens in new window">CrossRef
    71. Spreafico, A, Tentler, JJ, Pitts, TM, Tan, AC, Gregory, MA, Arcaroli, JJ (2013) Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clin Cancer Res 19: pp. 4149-62 1158/1078-0432.CCR-12-3140" target="_blank" title="It opens in new window">CrossRef
    72. Tan, X, Hu, L, Luquette, LJ, Gao, G, Liu, Y, Qu, H (2012) Systematic identification of synergistic drug pairs targeting HIV. Nat Biotechnol 30: pp. 1125-30 CrossRef
    73. Roller, D, Axelrod, M, Capaldo, B, Jensen, K, Mackey, A, Michael, J (2012) Synthetic lethal screening with small molecule inhibitors provides a pathway to rational combination therapies for melanoma. Mol Cancer Ther 11: pp. 2505-15 1158/1535-7163.MCT-12-0461" target="_blank" title="It opens in new window">CrossRef
    74. Matthews Griner, LA, Guha, R, Shinn, P, Young, RM, Keller, JM, Liu, D (2014) High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A 111: pp. 2349-54 11846111" target="_blank" title="It opens in new window">CrossRef
    75. Holbeck, S, Collins, JM, Doroshow, JH (2012) NCI-60 combination screening matrix of approved anticancer drugs. Eur J Cancer 48: pp. 11 CrossRef
    76. Marusyk, A, Almendro, V, Polyak, K (2012) Intra-tumour heterogeneity: a looking glass for cancer?. Nat Rev Cancer 12: pp. 323-34 CrossRef
    77. Zhao, B, Hemann, MT, Lauffenburger, DA (2014) Intratumor heterogeneity alters most effective drugs in designed combinations. Proc Natl Acad Sci U S A 111: pp. 10773-8 111" target="_blank" title="It opens in new window">CrossRef
    78. Zhao, B, Pritchard, JR, Lauffenburger, DA, Hemann, MT (2014) Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov 4: pp. 166-74 1158/2159-8290.CD-13-0465" target="_blank" title="It opens in new window">CrossRef
    79. Pe鈥檈r, D, Hacohen, N (2011) Principles and strategies for developing network models in cancer. Cell 144: pp. 864-73 11.03.001" target="_blank" title="It opens in new window">CrossRef
    80. Sharma, SV, Haber, DA, Settleman, J (2010) Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 10: pp. 241-53 CrossRef
    81. Tentler, JJ, Tan, AC, Weekes, CD, Jimeno, A, Leong, S, Pitts, TM (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9: pp. 338-50 CrossRef
    82. Lieu, CH, Tan, AC, Leong, S, Diamond, JR, Eckhardt, SG (2013) From bench to bedside: lessons learned in translating preclinical studies in cancer drug development. J Natl Cancer Inst 105: pp. 1441-56 CrossRef
    83. Iyengar, R, Zhao, S, Chung, SW, Mager, DE, Gallo, JM (2012) Merging systems biology with pharmacodynamics. Sci Transl Med 4: pp. 126ps7 1126/scitranslmed.3003563" target="_blank" title="It opens in new window">CrossRef
    84. Sorger, PK, Allerheiligen, SRB (2011) Quantitative and systems pharmacology in the post-genomic Era: New approaches to discovering drugs and understanding therapeutic mechanisms. An NIH white paper by the QSP workshop group.
    85. Feala, JD, Cortes, J, Duxbury, PM, Piermarocchi, C, McCulloch, AD, Paternostro, G (2010) Systems approaches and algorithms for discovery of combinatorial therapies. Wiley Interdiscip Rev Syst Biol Med 2: pp. 181-93 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Computer Applications in Chemistry
    Theoretical and Computational Chemistry
    Computational Biology/Bioinformatics
    Documentation and Information in Chemistry
  • 出版者:Chemistry Central Ltd
  • ISSN:1758-2946
文摘
Complex diseases like cancer are regulated by large, interconnected networks with many pathways affecting cell proliferation, invasion, and drug resistance. However, current cancer therapy predominantly relies on the reductionist approach of one gene-one disease. Combinations of drugs may overcome drug resistance by limiting mutations and induction of escape pathways, but given the enormous number of possible drug combinations, strategies to reduce the search space and prioritize experiments are needed. In this review, we focus on the use of computational modeling, bioinformatics and high-throughput experimental methods for discovery of drug combinations. We highlight cutting-edge systems approaches, including large-scale modeling of cell signaling networks, network motif analysis, statistical association-based models, identifying correlations in gene signatures, functional genomics, and high-throughput combination screens. We also present a list of publicly available data and resources to aid in discovery of drug combinations. Integration of these systems approaches will enable faster discovery and translation of clinically relevant drug combinations. Graphical abstract Spectrum of Systems Biology Approaches for Drug Combinations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700