Anti-IGF-1R monoclonal antibody inhibits the carcinogenicity activity of acquired trastuzumab-resistant SKOV3
详细信息    查看全文
  • 作者:Wei Wang (1) (2)
    Yan Zhang (3)
    Ming Lv (2)
    Jiannan Feng (1) (2)
    Hui Peng (4)
    Jing Geng (2)
    Zhou Lin (2)
    Tingting Zhou (2)
    Xinying Li (2)
    Beifen Shen (2)
    Yuanfang Ma (1)
    Chunxia Qiao (2)

    1. Laboratory of Cellular and Molecular Immunology
    ; Institute of Immunology ; Henan University ; Kaifeng ; 475001 ; China
    2. Laboratory of Immunology
    ; Institute of Basic Medical Sciences ; PO Box 130(3) ; Taiping Road #27 ; Beijing ; 100850 ; China
    3. Department of Gynecology and Obstetrics
    ; PLA General Hospital ; Fuxing Road No. 28 ; Beijing ; 100853 ; China
    4. Department of Environment and Pharmacy
    ; Tianjin Institute of Health and Environmental Medicine ; Beijing ; 100850 ; China
  • 关键词:IGF ; 1R ; Monoclonal antibody ; Acquired resistant ; Trastuzumab ; Ovarian cancer
  • 刊名:Journal of Ovarian Research
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:1,929 KB
  • 参考文献:1. Raval, RR, Sharabi, AB, Walker, AJ, Drake, CG, Sharma, P (2014) Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2: pp. 14 2051-1426-2-14" target="_blank" title="It opens in new window">CrossRef
    2. Slichenmyer, WJ, Fry, DW (2001) Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin Oncol 28: pp. 67-79 284-2" target="_blank" title="It opens in new window">CrossRef
    3. Schmidt, M, Lewark, B, Kohlschmidt, N, Glawatz, C, Steiner, E, Tanner, B, Pilch, H, Weikel, W, Kolbl, H, Lehr, HA (2005) Long-term prognostic significance of HER-2/neu in untreated node-negative breast cancer depends on the method of testing. Breast Cancer Res 7: pp. R256-R266 CrossRef
    4. Ross, JS, Fletcher, JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3: pp. 237-252
    5. Ladjemi, MZ, Jacot, W, Chardes, T, Pelegrin, A, Navarro-Teulon, I (2010) Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 59: pp. 1295-1312 262-010-0869-2" target="_blank" title="It opens in new window">CrossRef
    6. Hynes, NE, Stern, DF (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1198: pp. 165-184
    7. Clynes, RA, Towers, TL, Presta, LG, Ravetch, JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6: pp. 443-446 CrossRef
    8. Gennari, R, Menard, S, Fagnoni, F, Ponchio, L, Scelsi, M, Tagliabue, E, Castiglioni, F, Villani, L, Magalotti, C, Gibelli, N, Oliviero, B, Ballardini, B, Da Prada, G, Zambelli, A, Costa, A (2004) Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10: pp. 5650-5655 2.CCR-04-0225" target="_blank" title="It opens in new window">CrossRef
    9. Arnould, L, Gelly, M, Penault-Llorca, F, Benoit, L, Bonnetain, F, Migeon, C, Cabaret, V, Fermeaux, V, Bertheau, P, Garnier, J, Jeannin, JF, Coudert, B (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism?. Br J Cancer 94: pp. 259-267 2930" target="_blank" title="It opens in new window">CrossRef
    10. Piccart-Gebhart, MJ, Procter, M, Leyland-Jones, B, Goldhirsch, A, Untch, M, Smith, I, Gianni, L, Baselga, J, Bell, R, Jackisch, C, Cameron, D, Dowsett, M, Barrios, CH, Steger, G, Huang, CS, Andersson, M, Inbar, M, Lichinitser, M, Lang, I, Nitz, U, Iwata, H, Thomssen, C, Lohrisch, C, Suter, TM, Ruschoff, J, Suto, T, Greatorex, V, Ward, C, Straehle, C, McFadden, E, Dolci, MS, Gelber, RD (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: pp. 1659-1672 2306" target="_blank" title="It opens in new window">CrossRef
    11. Mullen, P, Cameron, DA, Hasmann, M, Smyth, JF, Langdon, SP (2007) Sensitivity to pertuzumab (2C4) in ovarian cancer models: cross-talk with estrogen receptor signaling. Mol Cancer Ther 6: pp. 93-100 CrossRef
    12. Agus, DB, Akita, RW, Fox, WD, Lewis, GD, Higgins, B, Pisacane, PI, Lofgren, JA, Tindell, C, Evans, DP, Maiese, K, Scher, HI, Sliwkowski, MX (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2: pp. 127-137 2)00097-1" target="_blank" title="It opens in new window">CrossRef
    13. Jackson, JG, St Clair, P, Sliwkowski, MX, Brattain, MG (2004) Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res 64: pp. 2601-2609 2.CAN-03-3106" target="_blank" title="It opens in new window">CrossRef
    14. Nahta, R, Hung, MC, Esteva, FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64: pp. 2343-2346 2.CAN-03-3856" target="_blank" title="It opens in new window">CrossRef
    15. Takai, N, Jain, A, Kawamata, N, Popoviciu, LM, Said, JW, Whittaker, S, Miyakawa, I, Agus, DB, Koeffler, HP (2005) 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer 104: pp. 2701-2708 2/cncr.21533" target="_blank" title="It opens in new window">CrossRef
    16. Teicher, BA, Doroshow, JH (2012) The promise of antibody-drug conjugates. N Engl J Med 367: pp. 1847-1848 211736" target="_blank" title="It opens in new window">CrossRef
    17. Verma, S, Miles, D, Gianni, L, Krop, IE, Welslau, M, Baselga, J, Pegram, M, Oh, DY, Dieras, V, Guardino, E, Fang, L, Lu, MW, Olsen, S, Blackwell, K (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367: pp. 1783-1791 209124" target="_blank" title="It opens in new window">CrossRef
    18. Tagliabue, E, Campiglio, M, Pupa, SM, Menard, S, Balsari, A (2012) Activity and resistance of trastuzumab according to different clinical settings. Cancer Treat Rev 38: pp. 212-217 2011.06.002" target="_blank" title="It opens in new window">CrossRef
    19. Piccart, M (2008) Circumventing de novo and acquired resistance to trastuzumab: new hope for the care of ErbB2-positive breast cancer. Clin Breast Cancer 8: pp. S100-S113 2008.s.006" target="_blank" title="It opens in new window">CrossRef
    20. Liebisch, P, Eppinger, S, Schopflin, C, Stehle, G, Munzert, G, Dohner, H, Schmid, M (2005) CD44v6, a target for novel antibody treatment approaches, is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica 90: pp. 489-493
    21. Richardson, PG, Sonneveld, P, Schuster, MW, Irwin, D, Stadtmauer, EA, Facon, T, Harousseau, JL, Ben-Yehuda, D, Lonial, S, Goldschmidt, H, Reece, D, San-Miguel, JF, Blade, J, Boccadoro, M, Cavenagh, J, Dalton, WS, Boral, AL, Esseltine, DL, Porter, JB, Schenkein, D, Anderson, KC (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352: pp. 2487-2498 CrossRef
    22. Saltz, LB, Meropol, NJ, Loehrer, PJ, Needle, MN, Kopit, J, Mayer, RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22: pp. 1201-1208 200/JCO.2004.10.182" target="_blank" title="It opens in new window">CrossRef
    23. Cunningham, D, Humblet, Y, Siena, S, Khayat, D, Bleiberg, H, Santoro, A, Bets, D, Mueser, M, Harstrick, A, Verslype, C, Chau, I, Van Cutsem, E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: pp. 337-345 25" target="_blank" title="It opens in new window">CrossRef
    24. Lenz, HJ, Van Cutsem, E, Khambata-Ford, S, Mayer, RJ, Gold, P, Stella, P, Mirtsching, B, Cohn, AL, Pippas, AW, Azarnia, N, Tsuchihashi, Z, Mauro, DJ, Rowinsky, EK (2006) Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 24: pp. 4914-4921 200/JCO.2006.06.7595" target="_blank" title="It opens in new window">CrossRef
    25. Van Cutsem, E, Peeters, M, Siena, S, Humblet, Y, Hendlisz, A, Neyns, B, Canon, JL, Van Laethem, JL, Maurel, J, Richardson, G, Wolf, M, Amado, RG (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25: pp. 1658-1664 200/JCO.2006.08.1620" target="_blank" title="It opens in new window">CrossRef
    26. Allegra, CJ, Jessup, JM, Somerfield, MR, Hamilton, SR, Hammond, EH, Hayes, DF, McAllister, PK, Morton, RF, Schilsky, RL (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27: pp. 2091-2096 200/JCO.2009.21.9170" target="_blank" title="It opens in new window">CrossRef
    27. Morton, RF, Hammond, EH (2009) ASCO provisional clinical opinion: KRAS, cetuximab, and panitumumab-clinical implications in colorectal cancer. J Oncol Pract 5: pp. 71-72 200/JOP.0924603" target="_blank" title="It opens in new window">CrossRef
    28. Sartore-Bianchi, A, Di Nicolantonio, F, Nichelatti, M, Molinari, F, De Dosso, S, Saletti, P, Martini, M, Cipani, T, Marrapese, G, Mazzucchelli, L, Lamba, S, Veronese, S, Frattini, M, Bardelli, A, Siena, S (2009) Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 4: pp. e7287 287" target="_blank" title="It opens in new window">CrossRef
    29. Di Fiore, F, Blanchard, F, Charbonnier, F, Le Pessot, F, Lamy, A, Galais, MP, Bastit, L, Killian, A, Sesboue, R, Tuech, JJ, Queuniet, AM, Paillot, B, Sabourin, JC, Michot, F, Michel, P, Frebourg, T (2007) Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer 96: pp. 1166-1169 CrossRef
    30. De Roock, W, Piessevaux, H, De Schutter, J, Janssens, M, De Hertogh, G, Personeni, N, Biesmans, B, Van Laethem, JL, Peeters, M, Humblet, Y, Van Cutsem, E, Tejpar, S (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19: pp. 508-515 CrossRef
    31. Karapetis, CS, Khambata-Ford, S, Jonker, DJ, O鈥機allaghan, CJ, Tu, D, Tebbutt, NC, Simes, RJ, Chalchal, H, Shapiro, JD, Robitaille, S, Price, TJ, Shepherd, L, Au, HJ, Langer, C, Moore, MJ, Zalcberg, JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359: pp. 1757-1765 CrossRef
    32. Lievre, A, Bachet, JB, Boige, V, Cayre, A, Le Corre, D, Buc, E, Ychou, M, Bouche, O, Landi, B, Louvet, C, Andre, T, Bibeau, F, Diebold, MD, Rougier, P, Ducreux, M, Tomasic, G, Emile, JF, Penault-Llorca, F, Laurent-Puig, P (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26: pp. 374-379 200/JCO.2007.12.5906" target="_blank" title="It opens in new window">CrossRef
    33. Freeman, DJ, Juan, T, Reiner, M, Hecht, JR, Meropol, NJ, Berlin, J, Mitchell, E, Sarosi, I, Radinsky, R, Amado, RG (2008) Association of K-ras mutational status and clinical outcomes in patients with metastatic colorectal cancer receiving panitumumab alone. Clin Colorectal Cancer 7: pp. 184-190 2008.n.024" target="_blank" title="It opens in new window">CrossRef
    34. Amado, RG, Wolf, M, Peeters, M, Van Cutsem, E, Siena, S, Freeman, DJ, Juan, T, Sikorski, R, Suggs, S, Radinsky, R, Patterson, SD, Chang, DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26: pp. 1626-1634 200/JCO.2007.14.7116" target="_blank" title="It opens in new window">CrossRef
    35. Perkins, G, Lievre, A, Ramacci, C, Meatchi, T, de Reynies, A, Emile, JF, Boige, V, Tomasic, G, Bachet, JB, Bibeau, F, Bouche, O, Penault-Llorca, F, Merlin, JL, Laurent-Puig, P (2010) Additional value of EGFR downstream signaling phosphoprotein expression to KRAS status for response to anti-EGFR antibodies in colorectal cancer. Int J Cancer 127: pp. 1321-1331 2/ijc.25152" target="_blank" title="It opens in new window">CrossRef
    36. Lievre, A, Bachet, JB, Le Corre, D, Boige, V, Landi, B, Emile, JF, Cote, JF, Tomasic, G, Penna, C, Ducreux, M, Rougier, P, Penault-Llorca, F, Laurent-Puig, P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66: pp. 3992-3995 2.CAN-06-0191" target="_blank" title="It opens in new window">CrossRef
    37. Saridaki, Z, Tzardi, M, Papadaki, C, Sfakianaki, M, Pega, F, Kalikaki, A, Tsakalaki, E, Trypaki, M, Messaritakis, I, Stathopoulos, E, Mavroudis, D, Georgoulias, V, Souglakos, J (2011) Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in >/= 2 line cetuximab-based therapy of colorectal cancer patients. PLoS One 6: pp. e15980 CrossRef
    38. Geyer, CE, Forster, J, Lindquist, D, Chan, S, Romieu, CG, Pienkowski, T, Jagiello-Gruszfeld, A, Crown, J, Chan, A, Kaufman, B, Skarlos, D, Campone, M, Davidson, N, Berger, M, Oliva, C, Rubin, SD, Stein, S, Cameron, D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: pp. 2733-2743 20" target="_blank" title="It opens in new window">CrossRef
    39. von Minckwitz, G, du Bois, A, Schmidt, M, Maass, N, Cufer, T, de Jongh, FE, Maartense, E, Zielinski, C, Kaufmann, M, Bauer, W, Baumann, KH, Clemens, MR, Duerr, R, Uleer, C, Andersson, M, Stein, RC, Nekljudova, V, Loibl, S (2009) Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03鈥?5 study. J Clin Oncol 27: pp. 1999-2006 200/JCO.2008.19.6618" target="_blank" title="It opens in new window">CrossRef
    40. Hurwitz, H, Fehrenbacher, L, Novotny, W, Cartwright, T, Hainsworth, J, Heim, W, Berlin, J, Baron, A, Griffing, S, Holmgren, E, Ferrara, N, Fyfe, G, Rogers, B, Ross, R, Kabbinavar, F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: pp. 2335-2342 2691" target="_blank" title="It opens in new window">CrossRef
    41. Sandler, A, Gray, R, Perry, MC, Brahmer, J, Schiller, JH, Dowlati, A, Lilenbaum, R, Johnson, DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: pp. 2542-2550 CrossRef
    42. Valachis, A, Polyzos, NP, Patsopoulos, NA, Georgoulias, V, Mavroudis, D, Mauri, D (2010) Bevacizumab in metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer Res Treat 122: pp. 1-7 27-0" target="_blank" title="It opens in new window">CrossRef
    43. Jia, Y, Zhang, Y, Qiao, C, Liu, G, Zhao, Q, Zhou, T, Chen, G, Li, Y, Feng, J, Zhang, Q, Peng, H (2013) IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model. Biochem Biophys Res Commun 436: pp. 740-745 2013.06.030" target="_blank" title="It opens in new window">CrossRef
    44. Yang, T, Burrows, C, Park, JH (2014) Development of a doxycycline-inducible lentiviral plasmid with an instant regulatory feature. Plasmid 72: pp. 29-35 2014.04.001" target="_blank" title="It opens in new window">CrossRef
    45. Pollak, M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8: pp. 915-928 2536" target="_blank" title="It opens in new window">CrossRef
    46. Baserga, R (1999) The IGF-I receptor in cancer research. Exp Cell Res 253: pp. 1-6 CrossRef
    47. Pollak, MN, Schernhammer, ES, Hankinson, SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4: pp. 505-518 CrossRef
    48. Clemmons, DR (2006) Involvement of insulin-like growth factor-I in the control of glucose homeostasis. Curr Opin Pharmacol 6: pp. 620-625 2006.08.006" target="_blank" title="It opens in new window">CrossRef
    49. LeRoith, D, Yakar, S (2007) Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 3: pp. 302-310 27" target="_blank" title="It opens in new window">CrossRef
    50. Cullen, KJ, Yee, D, Sly, WS, Perdue, J, Hampton, B, Lippman, ME, Rosen, N (1990) Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50: pp. 48-53
    51. Gooch, JL, Van Den Berg, CL, Yee, D (1999) Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death鈥損roliferative and anti-apoptotic effects. Breast Cancer Res Treat 56: pp. 1-10 23/A:1006208721167" target="_blank" title="It opens in new window">CrossRef
    52. Lee, AV, Yee, D (1995) Insulin-like growth factors and breast cancer. Biomed Pharmacother 49: pp. 415-421 22(96)82678-3" target="_blank" title="It opens in new window">CrossRef
    53. Peyrat, JP, Bonneterre, J (1992) Type 1 IGF receptor in human breast diseases. Breast Cancer Res Treat 22: pp. 59-67 CrossRef
    54. Hassan, AB, Macaulay, VM (2002) The insulin-like growth factor system as a therapeutic target in colorectal cancer. Ann Oncol 13: pp. 349-356 CrossRef
    55. Wu, Y, Yakar, S, Zhao, L, Hennighausen, L, LeRoith, D (2002) Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res 62: pp. 1030-1035
    56. Nickerson, T, Chang, F, Lorimer, D, Smeekens, SP, Sawyers, CL, Pollak, M (2001) In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res 61: pp. 6276-6280
    57. Ge, NL, Rudikoff, S (2000) Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 96: pp. 2856-2861
    58. Gee, JM, Robertson, JF, Gutteridge, E, Ellis, IO, Pinder, SE, Rubini, M, Nicholson, RI (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12: pp. S99-S111 CrossRef
    59. Villanueva, J, Vultur, A, Lee, JT, Somasundaram, R, Fukunaga-Kalabis, M, Cipolla, AK, Wubbenhorst, B, Xu, X, Gimotty, PA, Kee, D, Santiago-Walker, AE, Letrero, R, D鈥橝ndrea, K, Pushparajan, A, Hayden, JE, Brown, KD, Laquerre, S, McArthur, GA, Sosman, JA, Nathanson, KL, Herlyn, M (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18: pp. 683-695 2010.11.023" target="_blank" title="It opens in new window">CrossRef
    60. Shin, DH, Min, HY, El-Naggar, AK, Lippman, SM, Glisson, B, Lee, HY (2011) Akt/mTOR counteract the antitumor activities of cixutumumab, an anti-insulin-like growth factor I receptor monoclonal antibody. Mol Cancer Ther 10: pp. 2437-2448 235" target="_blank" title="It opens in new window">CrossRef
    61. Iravani, S, Zhang, HQ, Yuan, ZQ, Cheng, JQ, Karl, RC, Jove, R, Coppola, D (2003) Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett鈥檚 neoplasia. Hum Pathol 34: pp. 975-982 CrossRef
    62. LeRoith, D, Baserga, R, Helman, L, Roberts, CT (1995) Insulin-like growth factors and cancer. Ann Intern Med 122: pp. 54-59 26/0003-4819-122-1-199501010-00009" target="_blank" title="It opens in new window">CrossRef
    63. Berns, EM, Klijn, JG, van Staveren, IL, Portengen, H, Foekens, JA (1992) Sporadic amplification of the insulin-like growth factor 1 receptor gene in human breast tumors. Cancer Res 52: pp. 1036-1039
    64. De Souza, AT, Hankins, GR, Washington, MK, Fine, RL, Orton, TC, Jirtle, RL (1995) Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors. Oncogene 10: pp. 1725-1729
    65. Cui, H, Cruz-Correa, M, Giardiello, FM, Hutcheon, DF, Kafonek, DR, Brandenburg, S, Wu, Y, He, X, Powe, NR, Feinberg, AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299: pp. 1753-1755 26/science.1080902" target="_blank" title="It opens in new window">CrossRef
    66. Kaneda, A, Feinberg, AP (2005) Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res 65: pp. 11236-11240 2.CAN-05-2959" target="_blank" title="It opens in new window">CrossRef
    67. Abou-Alfa, GK, Capanu, M, O鈥橰eilly, EM, Ma, J, Chou, JF, Gansukh, B, Shia, J, Kalin, M, Katz, S, Abad, L, Reidy-Lagunes, DL, Kelsen, DP, Chen, HX, Saltz, LB (2014) A phase II study of cixutumumab (IMC-A12, NSC742460) in advanced hepatocellular carcinoma. J Hepatol 60: pp. 319-324 2013.09.008" target="_blank" title="It opens in new window">CrossRef
    68. Attias-Geva, Z, Bentov, I, Ludwig, DL, Fishman, A, Bruchim, I, Werner, H (2011) Insulin-like growth factor-I receptor (IGF-IR) targeting with monoclonal antibody cixutumumab (IMC-A12) inhibits IGF-I action in endometrial cancer cells. Eur J Cancer 47: pp. 1717-1726 2011.02.019" target="_blank" title="It opens in new window">CrossRef
    69. Rowinsky, EK, Youssoufian, H, Tonra, JR, Solomon, P, Burtrum, D, Ludwig, DL (2007) IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13: pp. 5549s-5555s 2.CCR-07-1109" target="_blank" title="It opens in new window">CrossRef
    70. Chi, KN, Gleave, ME, Fazli, L, Goldenberg, SL, So, A, Kollmannsberger, C, Murray, N, Tinker, A, Pollak, M (2012) A phase II pharmacodynamic study of preoperative figitumumab in patients with localized prostate cancer. Clin Cancer Res 18: pp. 3407-3413 2.CCR-12-0482" target="_blank" title="It opens in new window">CrossRef
    71. de Bono, JS, Piulats, JM, Pandha, HS, Petrylak, DP, Saad, F, Aparicio, LM, Sandhu, SK, Fong, P, Gillessen, S, Hudes, GR, Wang, T, Scranton, J, Pollak, MN (2014) Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer. Clin Cancer Res 20: pp. 1925-1934 2.CCR-13-1869" target="_blank" title="It opens in new window">CrossRef
    72. Gualberto, A, Karp, DD (2009) Development of the monoclonal antibody figitumumab, targeting the insulin-like growth factor-1 receptor, for the treatment of patients with non-small-cell lung cancer. Clin Lung Cancer 10: pp. 273-280 2009.n.038" target="_blank" title="It opens in new window">CrossRef
    73. Langer, CJ, Novello, S, Park, K, Krzakowski, M, Karp, DD, Mok, T, Benner, RJ, Scranton, JR, Olszanski, AJ, Jassem, J (2014) Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J Clin Oncol 32: pp. 2059-2066 200/JCO.2013.54.4932" target="_blank" title="It opens in new window">CrossRef
    74. Schmitz, S, Kaminsky-Forrett, MC, Henry, S, Zanetta, S, Geoffrois, L, Bompas, E, Moxhon, A, Mignion, L, Guigay, J, Knoops, L, Hamoir, M, Machiels, JP (2012) Phase II study of figitumumab in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck: clinical activity and molecular response (GORTEC 2008鈥?2). Ann Oncol 23: pp. 2153-2161 CrossRef
    75. Atzori, F, Tabernero, J, Cervantes, A, Prudkin, L, Andreu, J, Rodriguez-Braun, E, Domingo, A, Guijarro, J, Gamez, C, Rodon, J, Di Cosimo, S, Brown, H, Clark, J, Hardwick, JS, Beckman, RA, Hanley, WD, Hsu, K, Calvo, E, Rosello, S, Langdon, RB, Baselga, J (2011) A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res 17: pp. 6304-6312 2.CCR-10-3336" target="_blank" title="It opens in new window">CrossRef
    76. Ellis, PM, Shepherd, FA, Laurie, SA, Goss, GD, Olivo, M, Powers, J, Seymour, L, Bradbury, PA (2014) NCIC CTG IND.190 phase I trial of dalotuzumab (MK-0646) in combination with cisplatin and etoposide in extensive-stage small-cell lung cancer. J Thorac Oncol 9: pp. 410-413 CrossRef
    77. Scartozzi, M, Bianconi, M, Maccaroni, E, Giampieri, R, Berardi, R, Cascinu, S (2010) Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Ther 12: pp. 361-371
    78. Beltran, PJ, Calzone, FJ, Mitchell, P, Chung, YA, Cajulis, E, Moody, G, Belmontes, B, Li, CM, Vonderfecht, S, Velculescu, VE, Yang, G, Qi, J, Slamon, DJ, Konecny, GE (2014) Ganitumab (AMG 479) inhibits IGF-II-dependent ovarian cancer growth and potentiates platinum-based chemotherapy. Clin Cancer Res 20: pp. 2947-2958 2.CCR-13-3448" target="_blank" title="It opens in new window">CrossRef
    79. Strosberg, JR, Chan, JA, Ryan, DP, Meyerhardt, JA, Fuchs, CS, Abrams, T, Regan, E, Brady, R, Weber, J, Campos, T, Kvols, LK, Kulke, MH (2013) A multi-institutional, phase II open-label study of ganitumab (AMG 479) in advanced carcinoid and pancreatic neuroendocrine tumors. Endocr Relat Cancer 20: pp. 383-390 2-0390" target="_blank" title="It opens in new window">CrossRef
    80. Tap, WD, Demetri, G, Barnette, P, Desai, J, Kavan, P, Tozer, R, Benedetto, PW, Friberg, G, Deng, H, McCaffery, I, Leitch, I, Badola, S, Chang, S, Zhu, M, Tolcher, A (2012) Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol 30: pp. 1849-1856 200/JCO.2011.37.2359" target="_blank" title="It opens in new window">CrossRef
    81. Van Cutsem, E, Eng, C, Nowara, E, Swieboda-Sadlej, A, Tebbutt, N, Mitchell, EP, Davidenko, I, Stephenson, J, Elez, ME, Prenen, H, Deng, H, Tang, R, McCaffery, I, Oliner, K, Chen, L, Gansert, JL, Loh, E, Smethurst, D, Tabernero, J (2014) Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res 20: pp. 4240-4250 2.CCR-13-2752" target="_blank" title="It opens in new window">CrossRef
    82. Pappo, AS, Patel, SR, Crowley, J, Reinke, DK, Kuenkele, KP, Chawla, SP, Toner, GC, Maki, RG, Meyers, PA, Chugh, R, Ganjoo, KN, Schuetze, SM, Juergens, H, Leahy, MG, Geoerger, B, Benjamin, RS, Helman, LJ, Baker, LH (2011) R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol 29: pp. 4541-4547 200/JCO.2010.34.0000" target="_blank" title="It opens in new window">CrossRef
    83. Lin, EH, Lenz, HJ, Saleh, MN, Mackenzie, MJ, Knost, JA, Pathiraja, K, Langdon, RB, Yao, SL, Lu, BD (2014) A randomized, phase II study of the anti-insulin-like growth factor receptor type 1 (IGF-1R) monoclonal antibody robatumumab (SCH 717454) in patients with advanced colorectal cancer. Cancer Med 29: pp. 4541-4547
    84. Macaulay, VM, Middleton, MR, Protheroe, AS, Tolcher, A, Dieras, V, Sessa, C, Bahleda, R, Blay, JY, LoRusso, P, Mery-Mignard, D, Soria, JC (2013) Phase I study of humanized monoclonal antibody AVE1642 directed against the type 1 insulin-like growth factor receptor (IGF-1R), administered in combination with anticancer therapies to patients with advanced solid tumors. Ann Oncol 24: pp. 784-791 CrossRef
    85. Moreau, P, Cavallo, F, Leleu, X, Hulin, C, Amiot, M, Descamps, G, Facon, T, Boccadoro, M, Mignard, D, Harousseau, JL (2011) Phase I study of the anti insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody, AVE1642, as single agent and in combination with bortezomib in patients with relapsed multiple myeloma. Leukemia 25: pp. 872-874 2011.4" target="_blank" title="It opens in new window">CrossRef
    86. von Mehren, M, Britten, CD, Pieslor, P, Saville, W, Vassos, A, Harris, S, Galluppi, GR, Darif, M, Wainberg, ZA, Cohen, RB, Leong, S (2014) A phase 1, open-label, dose-escalation study of BIIB022 (anti-IGF-1R monoclonal antibody) in subjects with relapsed or refractory solid tumors. Invest New Drugs 32: pp. 518-525 CrossRef
    87. Burtrum, D, Zhu, Z, Lu, D, Anderson, DM, Prewett, M, Pereira, DS, Bassi, R, Abdullah, R, Hooper, AT, Koo, H, Jimenez, X, Johnson, D, Apblett, R, Kussie, P, Bohlen, P, Witte, L, Hicklin, DJ, Ludwig, DL (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63: pp. 8912-8921
    88. Cohen, BD, Baker, DA, Soderstrom, C, Tkalcevic, G, Rossi, AM, Miller, PE, Tengowski, MW, Wang, F, Gualberto, A, Beebe, JS, Moyer, JD (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11: pp. 2063-2073 2.CCR-04-1070" target="_blank" title="It opens in new window">CrossRef
    89. Nahta, R, Yuan, LX, Zhang, B, Kobayashi, R, Esteva, FJ (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: pp. 11118-11128 2.CAN-04-3841" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Gynecology; Reproductive Medicine;
  • 出版者:BioMed Central
  • ISSN:1757-2215
文摘
Background Antibody resistance, not only de novo but also acquired cases, usually exists and is related with lower survival rate and high risk of recurrence. Reversing the resistance often results in better clinical therapeutic effect. Previously, we established a trastuzumab-resistant ovarian cancer cell line, named as SKOV3-T, with lower HER2 and induced higher IGF-1R expression level to keep cell survival. Methods IGF-1R was identified important for SKOV3-T growth. Then, a novel anti-IGF-1R monoclonal antibody, named as LMAb1, was used to inhibit SKOV3-T in cell growth/proliferation, migration, clone formation and in vivo carcinogenicity. Results In both in vitro and in vivo assays, LMAb1 showed effective anti-tumor function, especially when being used in combination with trastuzumab, which was beneficial to longer survival time of mice as well as smaller tumor. It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of IGF-1R and downstream MAPK, AKT pathway transduction. Conclusion We achieved satisfactory anti-tumor activity using trastuzumab plus LMAb1 in trastuzumab-resistant ovarian cancer model. In similar cases, not only acquired but also de novo, good curative effect might be achieved using combined antibody therapy strategies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700