The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates
详细信息    查看全文
  • 作者:Jae-Cheon Sohn (1) (2) (3)
    Conrad C Labandeira (2) (3) (4)
    Donald R Davis (1)

    1. Department of Entomology
    ; Smithsonian Institution ; National Museum of Natural History ; Washington ; DC ; USA
    2. Department of Paleobiology
    ; Smithsonian Institution ; National Museum of Natural History ; Washington ; DC ; USA
    3. Department of Entomology
    ; University of Maryland ; College Park ; MD ; USA
    4. College of Life Sciences
    ; Capital Normal University ; Beijing ; China
  • 关键词:Lepidoptera ; Fossil record ; Taphonomy ; Diversity ; Divergence ; time estimation
  • 刊名:BMC Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:2,613 KB
  • 参考文献:1. Kristensen NP, Scoble M, Karsholt O. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa. 2007;1668:699鈥?47.
    2. Gaston KJ. The magnitude of global insect species richness. Conserv Biol. 1991;5:283鈥?6. 23-1739.1991.tb00140.x" target="_blank" title="It opens in new window">CrossRef
    3. Hammond PM. Species inventory. In: Groombridge B, editor. Global Biodiversity Status of the Earth鈥檚 Living Resources. London: Chapman & Hall; 1992. p. 17鈥?9.
    4. Scoble MJ. The Lepidoptera: Form, Function and Diversity. Oxford: Oxford University Press; 1992.
    5. Proctor M, Yeo P, Lack A. The Natural History of Pollination. London: Harper Collins Publishers; 1996.
    6. Lacki MJ, Johnson JS, Dodd LE, Baker MD. Prey consumption of insectivorous bats in coniferous forests of North-Central Idaho. Northwest Sci. 2007;81:199鈥?05. CrossRef
    7. Kritsky G, Cherry R. Insect Mythology. Writers Club Press: Lincoln; 2000.
    8. Kapoor VC. Origin and Evolution of Insects. New Delhi & Ludhiana: Kalyani Publishers; 1981.
    9. Labandeira CC, Sepkoski Jr TJ. Insect diversity in the fossil record. Science. 1993;261:310鈥?. CrossRef
    10. Kristensen NP, Skalski AW. Phylogeny and palaeontology. In: Kristensen NP, editor. Handbook of Zoology. Volume IV Arthropoda: Insecta. Part 35 Lepidoptera, Moths and Butterflies 1: Evolution, Systematics, and Biogeography. Berlin & New York: Walter de Gruyter; 1998. p. 7鈥?5.
    11. Kozlov MV, Ivanov VD, Rasnitsyn AP. Order Lepidoptera Linn茅, 1758. The butterflies and moths (= Papilionida Laicharting, 1781). In: Rasnitsyn AP, Quicke DLJ, editors. History of Insects. Dordrecht, Boston & London: Kluwer Academic Publishers; 2002. p. 220鈥?.
    12. Carpenter FM. Treatise on Invertebrate Paleontology. Part R (Arthropoda鈥?), 3 and 4 (Superclass Hexapoda). Boulder: Geological Society of America & Lawrence: the University of Kansas; 1992.
    13. Kristensen NP. Early evolution of the Lepidoptera鈥?鈥塗richoptera lineage: phylogeny and the ecological scenario. M茅m Mus Natl His Nat. 1997;173:253鈥?1.
    14. Wahlberg N, Weingartner E, Nylin S. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Mol Phylogenet Evol. 2003;28:473鈥?4. CrossRef
    15. Wahlberg N, Wheat CW, Pe帽a C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS One. 2013;8:e80875. doi:10.1371/journal.pone.0080875. CrossRef
    16. Braby MF, Vila R, Pierce NE. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zool J Linn Soc. 2006;147:239鈥?5. CrossRef
    17. Donoghue PCJ, Benton MJ. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol. 2007;22:424鈥?1. CrossRef
    18. Pyron RA. A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol. 2010;59:185鈥?4. CrossRef
    19. Skalski AW. Les l茅pidopt猫res fossiles de l'ambre, Etat actuel de nos connaissances (3me partie et fin). Linneana Belg. 1976;6:221鈥?3.
    20. Whalley PES. The systematics and biogeography of the Lower Jurassic insects of Dorset, England. Bull Br Mus Nat Hist (Geol). 1985;39:107鈥?9.
    21. Grimaldi DA, Engel MS. Evolution of the Insects. Cambridge: Cambridge University Press; 2005.
    22. Ansorge J. Revision of the 鈥淭richoptera鈥?described by Geinitz and Handlirsch from the Lower Toarcian of Dobbertin (Germany) based on new material. Nova Suppl Entomol. 2002;15:55鈥?4.
    23. Zhang W, Shih C, Labandeira CC, Sohn J-C, Davis DR, Santiago-Blay JA, et al. New fossil Lepidoptera (Insecta: Amphiesmenoptera) from the Middle Jurassic Jiulongshan Formation of northeastern China. PLoS One. 2013;8:e79500. doi:10.1371/journal.pone.0079500. CrossRef
    24. Huang D, Nel A, Minet J. A new family of moths from the Middle Jurassic (Insecta: Lepidoptera). Acta Geol Sinica. 2010;84:874鈥?5. 233.x" target="_blank" title="It opens in new window">CrossRef
    25. Skalski AW. An annotated review of all fossil records of Lower Lepidoptera. Bull Sugadaira Montane Res Cent. 1990;11:125鈥?.
    26. de Jong R. Estimating time and space in the evolution of the Lepidoptera. Tijdschr Entomol. 2007;150:319鈥?6. 233" target="_blank" title="It opens in new window">CrossRef
    27. Carpenter FM. A review of our present knowledge of the geological history of the insects. Psyche. 1930;37:15鈥?4. CrossRef
    28. Riek EF. The Insects of Australia. Melbourne: Melbourne University Press; 1970.
    29. Ollerton J. La evoluci贸n de las relaciones polinizador-planta en los artr贸podos. Bol Soc Entomol Aragonesa. 1999;26:741鈥?8.
    30. Carpenter FM, Burnham L. The geological record of insects. Annu Rev Earth Pl Sci. 1985;13:297鈥?14. CrossRef
    31. Powell JA, Mitter C, Farrell BD. Evolution of larval food preferences in Lepidoptera. In: Kristensen NP, editor. Handbook of Zoology. Volume IV Arthropoda: Insecta. Part 35 Lepidoptera, Moths and Butterflies 1: Evolution, Systematics, and Biogeography. Berlin & New York: Walter de Gruyter; 1998. p. 403鈥?2.
    32. Sohn J-C, Labandeira C, Davis D, Mitter C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa. 2012;3286:1鈥?32.
    33. Sohn J-C, Lamas G. Corrections, additions, and nomenclatural notes to the recently published world catalog of fossil and subfossil Lepidoptera. Zootaxa. 2013;3599:395鈥?. CrossRef
    34. Labandeira CC. Assessing the fossil record of plant鈥搃nsect associations: ichnodata versus body-fossil data. In: Bromley RG, Buatois LA, M谩ngano F, Genise JF, Melchor RN, editors. Sediment鈥揙rganism Interactions: A Multifaceted Ichnology. Tulsa: Society for Sedimentary Geology; 2007. p. 9鈥?6.
    35. Labandeira CC. Insects and other hexapods. In: Singer R, editor. Encyclopedia of Paleontology. Chicago: Fitzroy-Dearborn Publishers; 1999. p. 603鈥?4.
    36. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. A Geologic Time Scale 2012. Boston: Elsevier; 2012. doi:10.1016/B978-0-444-59425-9.00004-4.
    37. van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, et al. Order Lepidoptera Linnaeus, 1758. In: Zhang Z-Q, editor. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness, Zootaxa, vol. 3148. 2011. p. 212鈥?1.
    38. Mutanen M, Wahlberg N, Kaila L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc R Soc B. 2010;277:2839鈥?8. CrossRef
    39. Cho S, Zwick A, Regier J, Mitter C, Cummings M, Yao J, et al. Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? Syst Biol. 2011;60:782鈥?6. CrossRef
    40. Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP, Kawahara AY, et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One. 2013;8:e58568. doi:10.1371/journal.pone.0058568. CrossRef
    41. Bazinet AL, Cummings MP, Mitter KT, Mitter CW. Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS One. 2013;8:e82615. doi:10.1371/journal.pone.0082615. CrossRef
    42. Labandeira CC. The fossil record of insect extinction: new approaches and future directions. Am Entomol. 2005;51:14鈥?9. CrossRef
    43. Balmford AM, Jayasuriya AMH, Green MJB. Using higher-taxon richness as a surrogate for species richness: II. Local applications. Proc Roy Soc B. 1996;263:1571鈥?. 230" target="_blank" title="It opens in new window">CrossRef
    44. Labandeira CC. A compendium of fossil insect families. Milwaukee Public Mus Contr Biol Geol. 1994;88:1鈥?1.
    45. Nicholson DB, Ross AJ, Mayhew PJ. Fossil evidence for key innovations in the evolution of insect diversity. Proc R Soc B. 2014;281:20141823. 23" target="_blank" title="It opens in new window">CrossRef
    46. Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One. 2014;9:e109085. doi:10.1371/journal.pone.0109085. CrossRef
    47. Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS. The impact of the pull of the recent on the history of marine diversity. Science. 2003;300:1133鈥?. CrossRef
    48. Seilacher A, Rief W-E, Westphal F. Sedimentological, ecological and temporal patterns of fossil Lagerst盲tten. Phil Trans R Soc Lond B. 1985;311:5鈥?3. CrossRef
    49. Rust J. Fossil insects from the Fur and Olst Formations (鈥淢o Clay鈥? of Denmark (upper Paleocene/lowermost Eocene). In: Scoggin M, editor. Proceedings of the First International Palaeoentomological Conference, Moscow. Bratislava: AMBA Projects International; 1998. p. 135鈥?.
    50. Rust J. Biologie der Insekten aus dem 盲ltersten Terti盲r Nordeuropas, Habilitation Thesis, Universit盲t G枚ttingen, Biologische Fakult盲t der Georg-August. 1999.
    51. Penney D. Biodiversity of Fossils in Amber from the Major World Deposits. Manchester: Siri Scientific Press; 2010.
    52. Duncan IJ. The Taphonomy of Insects, PhD thesis. University of Bristol, Department of Geology. 1997.
    53. Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. 1996;77:213鈥?5. CrossRef
    54. Smith DM. Comparative taphonomy and paleoecology of insects in lacustrine deposits. In: Zherikhin VV, editor. Proceedings of the First International Palaeoentomological Conference. Bratislava: AMBA Projects International & Moscow: Paleontological Institute; 1998. p. 155鈥?1.
    55. Evenhuis NL. Catalogue of the Fossil Flies of the World (Insecta: Diptera). [http://hbs.bishopmuseum.org/fossilcat]
    56. Elias SA. Quaternary Insects and their Environments. Washington DC & London: Smithsonian Institution Press; 1992.
    57. Sutherland W. Botanical Inclusions in Baltic Amber. [http://content.yudu.com/Library/A1og25/PlantsADifferentPers/resources/content/56.swf]
    58. Sobczyk T, Kobbert MJ. Die Psychidae des baltischen Bernsteins. Nota lepid. 2009;32:13鈥?2.
    59. Labandeira CC, Wilf P, Johnson KR, Marsh F. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0鈥昐pring 2007). [http://paleobiology.si.edu/pdfs/insectDamageGuide3.01.pdf]
    60. Lancucka-Srodoniowa M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc Bot Pol. 1964;33:469鈥?3.
    61. Solomon JD. Frass characteristics for identifying insect borers (Lepidoptera: Cossidae and Sesiidae; Coleoptera: Cerambycidae) in living hardwoods. Can Entomol. 1977;109:295鈥?03. CrossRef
    62. Grimaldi D. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Missouri Bot Gard. 1999;86:373鈥?06. 2307/2666181" target="_blank" title="It opens in new window">CrossRef
    63. Richter G, Storch G. Beitr盲ge zur Ern盲hrungsbiologie eoz盲ner Flederm盲use aus der 鈥淕rube Messel鈥? Natur Mus. 1980;110:353鈥?7.
    64. Azar D, G猫ze R, El-Samrani A, Maalouly J, Nel A. Jurassic amber in Lebanon. Acta Geol Sinica. 2010;84:977鈥?3. CrossRef
    65. Ross AJ, Jarzembowski EA, Brooks SJ. The Cretaceous and Cenozoic record of insects (Hexapoda) with regard to global change. In: Culver SJ, Rawson PF, editors. Biotic response to global change, the last 145 million years. Cambridge: Cambridge University Press; 2000. p. 288鈥?02. CrossRef
    66. De Queiroz A. Contingent predictability in evolution: key traits and diversification. Syst Biol. 2002;51:917鈥?9. CrossRef
    67. Kozlov MV. Paleontology of the Lepidoptera and problems of phylogeny of the order Papilionoidea. In: Ponomarenko AG, editor. The Cretaceous Biocoenotic Crisis and the Evolution of Insects. Moscow: Nauka Press; 1988. p. 16鈥?9.
    68. Labandeira CC, Dilcher DL, Davis DR, Wagner DL. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc Natl Acad Sci U S A. 1994;91:12278鈥?2. CrossRef
    69. Rasnitsyn AP. Pervaya nakhodka babochki yurskogo vozrasta [First find of a moth from the Jurassic]. Dokl Akad Nauk SSSR. 1983;269:467鈥?1.
    70. Friis EM, Crane PR, Pederson NM. Early Flowers and Angiosperm Evolution. Cambridge: Cambridge University Press; 2011. CrossRef
    71. Imada Y, Kawakita A, Kato M. Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proc Roy Soc B. 2011;278:3026鈥?3. CrossRef
    72. Bell CD, Soltis DE, Soltis PS. The age and diversification of the angiosperms re-visited. Am J Bot. 2010;97:1296鈥?03. CrossRef
    73. Magall贸n S, Hilu KW, Quandt D. Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot. 2013;100:556鈥?3. CrossRef
    74. Labandeira C. Amber. In: Laflamme M, Schiffbauer JD, Darroch SAF, editors. Reading and Writing of the Fossil record: Preservational Pathways to Exceptional Fossilization, Paleontol Soc Pap, vol 20, 2014. p. 163鈥?16.
    75. Schmidt AR, Jancke S, Lindquist EE, Ragazzi E, Roghi G, Nascimbene PC, et al. Arthropods in amber from the Triassic Period. Proc Natl Acad Sci U S A. 2012;109:14796鈥?01. CrossRef
    76. Raup DM. Biases in the fossil record of species and genera. Bull Carnegie Mus Nat Hist. 1979;13:85鈥?1.
    77. Warnock RCM, Yang Z, Donoghue PCJ. Exploring uncertainty in the calibration of the molecular clock. Biol Letters. 2012;8:156鈥?. CrossRef
    78. Brocklehurst N, Upchurch P, Mannion PD, O鈥機onnor J. The completeness of the fossil record of Mesozoic birds: Implications for early avian evolution. PLoS One. 2012;7:e39056. doi:10.1371/journal.pone.0039056. CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts. Results We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages. Conclusion Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700