Evolution and gene capture in ancient endogenous retroviruses - insights from the crocodilian genomes
详细信息    查看全文
  • 作者:Amanda Y Chong (1)
    Kenji K Kojima (2)
    Jerzy Jurka (2)
    David A Ray (3) (4) (5)
    Arian F A Smit (6)
    Sally R Isberg (1) (7)
    Jaime Gongora (1)

    1. Faculty of Veterinary Science
    ; University of Sydney ; Sydney ; NSW ; 2006 ; Australia
    2. Genetic Information Research Institute
    ; Los Altos ; CA ; 94022 ; USA
    3. Department of Biochemistry
    ; Molecular Biology ; Plant Pathology and Entomology ; Mississippi State University ; Starkville ; Mississippi State ; 39762 ; USA
    4. Institute for Genomics
    ; Biocomputing and Biotechnology ; Mississippi State University ; Starkville ; Mississippi State ; 39762 ; USA
    5. Current Address
    ; Department of Biological Sciences ; Texas Tech University ; Lubbock ; TX ; 79409 ; USA
    6. Institute for Systems Biology
    ; Seattle ; WA ; 98109-5234 ; USA
    7. Centre for Crocodile Research
    ; Noonamah ; NT ; 0837 ; Australia
  • 刊名:Retrovirology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:5,571 KB
  • 参考文献:1. Herniou, E, Martin, J, Miller, K, Cook, J, Wilkinson, M, Tristem, M (1998) Retroviral diversity and distribution in vertebrates. J Virol 72: pp. 5955-5966
    2. Jaratlerdsiri, W, Rodr铆guez-Z谩rate, CJ, Isberg, SR, Damayanti, CS, Miles, LG, Chansue, N, Moran, C, Melville, L, Gongora, J (2009) Distribution of Endogenous Retroviruses in Crocodilians. J Virol 83: pp. 10305-10308 CrossRef
    3. Martin, J, Herniou, E, Cook, J, O'Neill, RW, Tristem, M (1999) Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J Virol 73: pp. 2442-2449
    4. Chong, AYY, Atkinson, SJ, Isberg, S, Gongora, J (2012) Strong purifying selection in endogenous retroviruses in the saltwater crocodile (Crocodylus porosus) in the Northern Territory of Australia. Mobile DNA 3: pp. 20 CrossRef
    5. Martin, J, Kabat, P, Herniou, E, Tristem, M (2002) Characterization and complete nucleotide sequence of an unusual reptilian retrovirus recovered from the Order Crocodylia. J Virol 76: pp. 4651-4654 CrossRef
    6. St John, JA, Braun, EL, Isberg, SR, Miles, LG, Chong, AY, Gongora, J, Dalzell, P, Moran, C, Bed'hom, B, Abzhanov, A, Burgess, SC, Cooksey, AM, Castoe, TA, Crawford, NG, Densmore, LD, Drew, JC, Edwards, SV, Faircloth, BC, Fujita, MK, Greenwold, MJ, Hoffmann, FG, Howard, JM, Iguchi, T, Janes, DE, Khan, SY, Kohno, S, Koning, AJ, Lance, SL, McCarthy, FM, McCormack, JE (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 13: pp. 415 CrossRef
    7. Hugall, AF, Foster, R, Lee, MSY (2007) Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 56: pp. 543-563 CrossRef
    8. Roos, J, Aggarwal, RK, Janke, A (2007) Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary. Mol Phylogenet Evol 45: pp. 663-673 CrossRef
    9. Jern, P, Sperber, GO, Blomberg, J (2005) Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2: pp. 50 CrossRef
    10. Blomberg, J, Benachenhou, F, Blikstad, V, Sperber, G, Mayer, J (2009) Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 448: pp. 115-123 CrossRef
    11. Polavarapu, N, Bowen, N, McDonald, J (2006) Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses. Genome Biol 7: pp. R51 CrossRef
    12. Bannert, N, Kurth, R (2006) The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet 7: pp. 149-173 CrossRef
    13. Belshaw, R, Pereira, V, Katzourakis, A, Talbot, G, Pa膷es, J, Burt, A, Tristem, M (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A 101: pp. 4894-4899 CrossRef
    14. Katzourakis, A, Rambaut, A, Pybus, OG (2005) The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 13: pp. 463-468 CrossRef
    15. Belshaw, R, Katzourakis, A, Pa膷es, J, Burt, A, Tristem, M (2005) High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 22: pp. 814-817 CrossRef
    16. Gifford, R, Tristem, M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26: pp. 291-316 23/A:1024455415443" target="_blank" title="It opens in new window">CrossRef
    17. Jurka, J, Bao, W, Kojima, KK (2011) Families of transposable elements, population structure and the origin of species. Biol Direct 6: pp. 1-16 CrossRef
    18. Muriaux, D, Rein, A (2003) Encapsidation and transduction of cellular genes by retroviruses. Front Biosci 8: pp. D135-D142 CrossRef
    19. Katz, RA, Skalka, AM (1990) Generation of diversity in retroviruses. Annu Rev Genet 24: pp. 409-445 CrossRef
    20. LaPierre, LA, Casey, JW, Holzschu, DL (1998) Walleye Retroviruses Associated with Skin Tumors and Hyperplasias Encode Cyclin D Homologs. J Virol 72: pp. 8765-8771
    21. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Guti茅rrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW Jr, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, / et al: Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. / Science. Submitted.
    22. Blikstad, V, Benachenhou, F, Sperber, GO, Blomberg, J (2008) Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol Life Sci 65: pp. 3348-3365 CrossRef
    23. Harshman, J, Huddleston, CJ, Bollback, JP, Parsons, TJ, Braun, MJ (2003) True and false gharials: A nuclear gene phylogeny of Crocodylia. Syst Biol 52: pp. 386-402 CrossRef
    24. Llorens, C, Fares, M, Moya, A (2008) Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evol Biol 8: pp. 276 CrossRef
    25. Carr茅-Eus猫be, D, Coudouel, N, Magre, S (2009) OVEX1, a novel chicken endogenous retrovirus with sex-specific and left-right asymmetrical expression in gonads. Retrovirology 6: pp. 59 CrossRef
    26. Tristem, M, Myles, T, Hill, F (1995) A Highly Divergent Retroviral Sequence in the Tuatara (Sphenodon). Virology 210: pp. 206-211 CrossRef
    27. Kojima, KK, Jurka, J (2013) LTR retrotransposons from the western painted turtle. Rep Base Reports 13: pp. 1931-1934
    28. Kapitonov, VV, Jurka, J, Kapitonov, VV, Jurka, J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9: pp. 411-412 CrossRef
    29. Rebollo, R, Horard, B, Hubert, B, Vieira, C (2010) Jumping genes and epigenetics: Towards new species. Gene 454: pp. 1-7 CrossRef
    30. Oliver, KR, Greene, WK (2009) Transposable elements: powerful facilitators of evolution. Bioessays 31: pp. 703-714 CrossRef
    31. Benit, L, Lallemand, JB, Casella, JF, Philippe, H, Heidmann, T (1999) ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol 73: pp. 3301-3308
    32. Barrio AM, Ekerljung M, Jern P, Benachenhou F, Sperber GO, Bongcam-Rudloff E, Blomberg J, Andersson G: The first sequenced carnivore genome shows complex host-endogenous retrovirus relationships. / PLoS One 2011, 6.
    33. Alfoldi, J, Palma, F, Grabherr, M, Williams, C, Kong, L, Mauceli, E, Russell, P, Lowe, CB, Glor, RE, Jaffe, JD, Ray, DA, Boissinot, S, Shedlock, AM, Botka, C, Castoe, TA, Colbourne, JK, Fujita, MK, Moreno, RG, Hallers, BF, Haussler, D, Heger, A, Heiman, D, Janes, DE, Johnson, J, Jong, PJ, Koriabine, MY, Lara, M, Novick, PA, Organ, CL, Peach, SE (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477: pp. 587-591 CrossRef
    34. Garcia-Etxebarria, K, Jugo, BM (2010) Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J Virol 84: pp. 10852-10862 CrossRef
    35. Huda A, Polavarapu N, Jordan IK, McDonald JF: Endogenous retroviruses of the chicken genome. / Biol Direct 2008, 3.
    36. Mandal, PK, Kazazian, HH (2008) SnapShot: vertebrate transposons. Cell 135: pp. 192-192 CrossRef
    37. Gentles, AJ, Wakefield, MJ, Kohany, O, Gu, W, Batzer, MA, Pollock, DD, Jurka, J (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17: pp. 992-1004 CrossRef
    38. Hellsten, U, Harland, RM, Gilchrist, MJ, Hendrix, D, Jurka, J, Kapitonov, V, Ovcharenko, I, Putnam, NH, Shu, S, Taher, L, Blitz, IL, Blumberg, B, Dichmann, DS, Dubchak, I, Amaya, E, Detter, JC, Fletcher, R, Gerhard, DS, Goodstein, D, Graves, T, Grigoriev, IV, Grimwood, J, Kawashima, T, Lindquist, E, Lucas, SM, Mead, PE, Mitros, T, Ogino, H, Ohta, Y, Poliakov, AV (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328: pp. 633-636 CrossRef
    39. Kim, H-S, Takenaka, O, Crow, TJ (1999) Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J Gen Virol 80: pp. 2613-2619
    40. Johnson, WE, Coffin, JM (1999) Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci U S A 96: pp. 10254-10260 CrossRef
    41. Xiong, Y, Eickbush, TH (1988) Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol 5: pp. 675-690
    42. Xiong, Y, Eickbush, TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: pp. 3353-3362
    43. King, AM, Adams, MJ, Lefkowitz, EJ, Carstens, EB (2012) Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, London
    44. Butler, M, Goodwin, T, Simpson, M, Singh, M, Poulter, R (2001) Vertebrate LTR retrotransposons of the Tf1/Sushi group. J Mol Evol 52: pp. 260-274
    45. Schwartz, DE, Tizard, R, Gilbert, W (1983) Nucleotide sequence of rous sarcoma virus. Cell 32: pp. 853-869 CrossRef
    46. Swanstrom, R, Parker, RC, Varmus, HE, Bishop, JM (1983) Transduction of a cellular oncogene: the genesis of Rous sarcoma virus. Proc Natl Acad Sci U S A 80: pp. 2519-2523 CrossRef
    47. LaPierre, LA, Holzschu, DL, Bowser, PR, Casey, JW (1999) Sequence and transcriptional analyses of the fish retroviruses walleye epidermal hyperplasia virus types 1 and 2: evidence for a gene duplication. J Virol 73: pp. 9393-9403
    48. Huang, E, Nocka, K, Beier, DR, Chu, T-Y, Buck, J, Lahm, H-W, Wellner, D, Leder, P, Besmer, P (1990) The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63: pp. 225-233 CrossRef
    49. Williams, DE, Eisenman, J, Baird, A, Rauch, C, Ness, K, March, CJ, Park, LS, Martin, U, Mochizukl, DY, Boswell, HS (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63: pp. 167-174 CrossRef
    50. Zsebo, KM, Williams, DA, Geissler, EN, Broudy, VC, Martin, FH, Atkins, HL, Hsu, R-Y, Birkett, NC, Okino, KH, Murdock, DC (1990) Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63: pp. 213-224 CrossRef
    51. Huang, EJ, Nocka, KH, Buck, J, Besmer, P (1992) Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell 3: pp. 349-362 CrossRef
    52. Kanetsky, PA, Mitra, N, Vardhanabhuti, S, Li, M, Vaughn, DJ, Letrero, R, Ciosek, SL, Doody, DR, Smith, LM, Weaver, J, Albano, A, Chen, C, Starr, JR, Rader, DJ, Godwin, AK, Reilly, MP, Hakonarson, H, Schwartz, SM, Nathanson, KL (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41: pp. 811-815 CrossRef
    53. Rapley, EA, Turnbull, C, Olama, AA, Dermitzakis, ET, Linger, R, Huddart, RA, Renwick, A, Hughes, D, Hines, S, Seal, S, Morrison, J, Nsengimana, J, Deloukas, P, Testicular Cancer Collaboration, UK, Rahman, N, Bishop, DT, Easton, DF, Stratton, MR (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41: pp. 807-810 CrossRef
    54. Karyadi, DM, Karlins, E, Decker, B, Holdt, BM, Carpintero-Ramirez, G, Parker, HG, Wayne, RK, Ostrander, EA (2013) A copy number variant at the KITLG locus likely confers risk for canine squamous cell carcinoma of the digit. PLoS Genet 9: pp. e1003409 CrossRef
    55. Besmer, P, Murphy, JE, George, PC, Qiu, F, Bergold, PJ, Lederman, L, Snyder, HW, Brodeur, D, Zuckerman, EE, Hardy, WD (1986) A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320: pp. 415-421 CrossRef
    56. Hultman, KA, Bahary, N, Zon, LI, Johnson, SL (2007) Gene duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a. PLoS Genet 3: pp. e17 CrossRef
    57. Reymond, N, Borg, JP, Lecocq, E, Adelaide, J, Campadelli-Fiume, G, Dubreuil, P, Lopez, M (2000) Human nectin3/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene 255: pp. 347-355 CrossRef
    58. Fabre, S, Reymond, N, Cocchi, F, Menotti, L, Dubreuil, P, Campadelli-Fiume, G, Lopez, M (2002) Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C'-C"-D beta-strands of the nectin1 V domain. J Biol Chem 277: pp. 27006-27013 CrossRef
    59. Sperber, GO, Airola, T, Jern, P, Blomberg, J (2007) Automated recognition of retroviral sequences in genomic data鈥擱etroTector漏. Nucleic Acids Res 35: pp. 4964-4976 CrossRef
    60. Bao, Z, Eddy, SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12: pp. 1269-1276 CrossRef
    61. Jurka, J, Kapitonov, VV, Pavlicek, A, Klonowski, P, Kohany, O, Walichiewicz, J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: pp. 462-467 CrossRef
    62. Altschul, SF, Madden, TL, Sch盲ffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: pp. 3389-3402 CrossRef
    63. Johnson, M, Zaretskaya, I, Raytselis, Y, Merezhuk, Y, McGinnis, S, Madden, TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36: pp. W5-W9 CrossRef
    64. Kohany, O, Gentles, A, Hankus, L, Jurka, J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7: pp. 474 CrossRef
    65. Martin, J, Herniou, E, Cook, J, Oneill, RW, Tristem, M (1997) Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates. J Virol 71: pp. 437-443
    66. Katoh, K, Kuma, K, Toh, H, Miyata, T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: pp. 511-518 CrossRef
    67. Thompson, JD, Higgins, DG, Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: pp. 4673-4680 CrossRef
    68. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    69. Bolisetty M, Blomberg J, Benachenhou F, Sperber G, Beemon K: Unexpected diversity and expression of avian endogenous retroviruses. / MBio 2012, 3.
    70. Llorens, C, Futami, R, Covelli, L, Dom铆nguez-Escrib谩, L, Viu, JM, Tamarit, D, Aguilar-Rodr铆guez, J, Vicente-Ripolles, M, Fuster, G, Bernet, GP (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39: pp. D70-D74 CrossRef
    71. Dimmic, MW, Rest, JS, Mindell, DP, Goldstein, RA (2002) rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55: pp. 65-73 239-001-2304-y" target="_blank" title="It opens in new window">CrossRef
    72. Guindon, S, Dufayard, J-F, Lefort, V, Anisimova, M, Hordijk, W, Gascuel, O (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: pp. 307-321 CrossRef
    73. Anisimova, M, Gascuel, O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55: pp. 539-552 CrossRef
    74. Kimura, M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: pp. 111-120 CrossRef
    75. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797 CrossRef
    76. Wan, Q-H, Pan, S-K, Hu, L, Zhu, Y, Xu, P-W, Xia, J-Q, Chen, H, He, G-Y, He, J, Ni, X-W (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res 23: pp. 1091-1105 CrossRef
  • 刊物主题:Virology; Infectious Diseases; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1742-4690
文摘
Background Crocodilians are thought to be hosts to a diverse and divergent complement of endogenous retroviruses (ERVs) but a comprehensive investigation is yet to be performed. The recent sequencing of three crocodilian genomes provides an opportunity for a more detailed and accurate representation of the ERV diversity that is present in these species. Here we investigate the diversity, distribution and evolution of ERVs from the genomes of three key crocodilian species, and outline the key processes driving crocodilian ERV proliferation and evolution. Results ERVs and ERV related sequences make up less than 2% of crocodilian genomes. We recovered and described 45 ERV groups within the three crocodilian genomes, many of which are species specific. We have also revealed a new class of ERV, ERV4, which appears to be common to crocodilians and turtles, and currently has no characterised exogenous counterpart. For the first time, we formally describe the characteristics of this ERV class and its classification relative to other recognised ERV and retroviral classes. This class shares some sequence similarity and sequence characteristics with ERV3, although it is phylogenetically distinct from the other ERV classes. We have also identified two instances of gene capture by crocodilian ERVs, one of which, the capture of a host KIT-ligand mRNA has occurred without the loss of an ERV domain. Conclusions This study indicates that crocodilian ERVs comprise a wide variety of lineages, many of which appear to reflect ancient infections. In particular, ERV4 appears to have a limited host range, with current data suggesting that it is confined to crocodilians and some lineages of turtles. Also of interest are two ERV groups that demonstrate evidence of host gene capture. This study provides a framework to facilitate further studies into non-mammalian vertebrates and highlights the need for further studies into such species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700