OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo
详细信息    查看全文
  • 作者:Diego Iglesias-Gato (1)
    Yin-Choy Chuan (1)
    Ning Jiang (1) (2)
    Charlotte Svensson (1)
    Jing Bao (1) (2)
    Indranil Paul (1)
    Lars Egevad (3)
    Benedikt M Kessler (4)
    Pernilla Wikstr枚m (5)
    Yuanjie Niu (2)
    Amilcar Flores-Morales (1)

    1. The Novo Nordisk Foundation Center for Protein Research
    ; Faculty of Health Sciences ; University of Copenhagen ; 2200 ; Copenhagen ; Denmark
    2. Tianjin Institute of Urology
    ; Tianjin Medical University ; 300211 ; Tianjin ; China
    3. Section of Urology
    ; Department of Surgical Science Karolinska Institutet ; 17176 ; Stockholm ; Sweden
    4. Target Discovery Institute
    ; Nuffield Department of Clinical Medicine ; University of Oxford ; OX3 7BN ; Oxford ; UK
    5. Department of Medical Biosciences
    ; Pathology ; Ume氓 University ; 90185 ; Ume氓 ; Sweden
  • 关键词:Otubain 1 ; Deubiquitinase ; Ubiquitin ; Prostate cancer ; RhoA ; Androgen
  • 刊名:Molecular Cancer
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 全文大小:2,912 KB
  • 参考文献:1. Crawford ED. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology. 2009;73:S4鈥?0. CrossRef
    2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11鈥?0. CrossRef
    3. Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A, Flores-Morales A. Androgen induction of prostate cancer cell invasion is mediated by ezrin. J Biol Chem. 2006;281:29938鈥?8. CrossRef
    4. Sun J, Liu W, Adams TS, Sun J, Li X, Turner AR, et al. DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate. 2007;67:692鈥?00. CrossRef
    5. Gioeli D, Ficarro SB, Kwiek JJ, Aaronson D, Hancock M, Catling AD, et al. Androgen receptor phosphorylation: regulation and identification of the phosphorylation sites. J Biol Chem. 2002;277:29304鈥?4. CrossRef
    6. Hu R, Isaacs WB, Luo J. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate. 2011;71:1656鈥?7. CrossRef
    7. Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res. 2009;69:4434鈥?2. CrossRef
    8. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 1995;9:401鈥?. CrossRef
    9. Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T. Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol. 1999;189:559鈥?3. 189:4<559::AID-PATH471>3.0.CO;2-Y" target="_blank" title="It opens in new window">CrossRef
    10. Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Janne OA, et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 2009;69:8141鈥?. CrossRef
    11. Chuan YC, Iglesias-Gato D, Fernandez-Perez L, Cedazo-Minguez A, Pang ST, Norstedt G, et al. Ezrin mediates c-Myc actions in prostate cancer cell invasion. Oncogene. 2010;29:1531鈥?2. CrossRef
    12. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399鈥?34. 1807.093809" target="_blank" title="It opens in new window">CrossRef
    13. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550鈥?3. CrossRef
    14. Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H, Nakada S. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell. 2014;53:617鈥?0. CrossRef
    15. Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature. 2010;466:941鈥?. CrossRef
    16. Liu X, Jiang WN, Wang JG, Chen H. Colon cancer bears overexpression of OTUB1. Pathol Res Pract. 2014;210:770鈥?. CrossRef
    17. Pujari R, Hunte R, Khan WN, Shembade N. A20-mediated negative regulation of canonical NF-kappaB signaling pathway. Immunol Res. 2013;57:166鈥?1. CrossRef
    18. Carneiro AP, Reis CF, Morari EC, Maia YC, Nascimento R, Bonatto JM, et al. A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours. Br J Cancer. 2014;111:551鈥?. CrossRef
    19. Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 2013;154:169鈥?4. CrossRef
    20. Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, Bekker-Jensen S, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell. 2013;50:818鈥?0. CrossRef
    21. Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis MJ, et al. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol. 2013;20:1033鈥?. CrossRef
    22. Edelmann MJ, Iphofer A, Akutsu M, Altun M, di Gleria K, Kramer HB, et al. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J. 2009;418:379鈥?0. 18" target="_blank" title="It opens in new window">CrossRef
    23. Blagoev B, Mann M. Quantitative proteomics to study mitogen-activated protein kinases. Methods. 2006;40:243鈥?0. CrossRef
    24. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006;7:952鈥?. CrossRef
    25. Lin MF, Garcia-Arenas R, Chao YC, Lai MM, Patel PC, Xia XZ. Regulation of prostatic acid phosphatase expression and secretion by androgen in LNCaP human prostate carcinoma cells. Arch Biochem Biophys. 1993;300:384鈥?0. CrossRef
    26. Zhao JC, Yu J, Runkle C, Wu L, Hu M, Wu D, et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res. 2012;22:322鈥?1. CrossRef
    27. Edelmann MJ, Kramer HB, Altun M, Kessler BM. Post-translational modification of the deubiquitinating enzyme otubain 1 modulates active RhoA levels and susceptibility to Yersinia invasion. FEBS J. 2010;277:2515鈥?0. CrossRef
    28. Gadea G, de Toledo M, Anguille C, Roux P. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol. 2007;178:23鈥?0. CrossRef
    29. Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol. 2010;17:939鈥?7. 1873" target="_blank" title="It opens in new window">CrossRef
    30. Komander D, Rape M. The ubiquitin code. Annual review of biochemistry. 2012;81:203鈥?9. CrossRef
    31. Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, Virdee S, et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat Struct Mol Biol. 2012;19:62鈥?1. CrossRef
    32. Wiener R, Zhang X, Wang T, Wolberger C. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature. 2012;483:618鈥?2. CrossRef
    33. Sun XX, Challagundla KB, Dai MS. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J. 2012;31:576鈥?2. CrossRef
    34. Stanisic V, Malovannaya A, Qin J, Lonard DM, O'Malley BW. OTU Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ERalpha transcriptional activity. J Biol Chem. 2009;284:16135鈥?5. CrossRef
    35. Coutts AS, Weston L, La Thangue NB. Actin nucleation by a transcription co-factor that links cytoskeletal events with the p53 response. Cell Cycle. 2010;9:1511鈥?. CrossRef
    36. Coutts AS, Weston L, La Thangue NB. A transcription co-factor integrates cell adhesion and motility with the p53 response. Proc Natl Acad Sci U S A. 2009;106:19872鈥?. CrossRef
    37. Gonzalez-Montelongo MC, Marin R, Perez JA, Gomez T, Diaz M. Polyamines transduce the nongenomic, androgen-induced calcium sensitization in intestinal smooth muscle. Mol Endocrinol. 2013;27:1603鈥?6. CrossRef
    38. Kluth M, Harasimowicz S, Burkhardt L, Grupp K, Krohn A, Prien K, et al. Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. International journal of cancer. Int J Cancer J Int Du Cancer. 2014;135:1369鈥?0. CrossRef
    39. Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995;81:1137鈥?6. 18-2" target="_blank" title="It opens in new window">CrossRef
    40. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671鈥?. CrossRef
    41. Hammarsten P, Karalija A, Josefsson A, Rudolfsson SH, Wikstrom P, Egevad L, et al. Low levels of phosphorylated epidermal growth factor receptor in nonmalignant and malignant prostate tissue predict favorable outcome in prostate cancer patients. Clin Cancer Res. 2010;16:1245鈥?5. CrossRef
    42. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367鈥?2. CrossRef
    43. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794鈥?05. CrossRef
    44. Niu Y, Altuwaijri S, Yeh S, Lai KP, Yu S, Chuang KH, et al. Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci U S A. 2008;105:12188鈥?3. CrossRef
    45. Jing C, Ning J, Yuanjie N. The preventative effects of sunitinib malate observed in the course from non-castration to castration LNCaP xenograft prostate tumors. J Cancer Res Clin Oncol. 2012;138:2137鈥?3. CrossRef
    46. Jiang N, Hjorth-Jensen K, Hekmat O, Iglesias-Gato D, Kruse T, Wang C, et al. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene. 2014. [Epub ahead of print]
    47. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11鈥?2. CrossRef
    48. Berenjeno IM, Nunez F, Bustelo XR. Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases. Oncogene. 2007;26:4295鈥?05. CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Ubiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored. Methods RNAi screening was used to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown was used to investigate OTUB1 influence in tumor growth. Results Our RNAi screening identified OTUB1 as an important regulator of prostate cancer cell invasion through the modulation of RhoA activation. The effect of OTUB1 on RhoA activation is important for androgen-induced repression of p53 expression in prostate cancer cells. In localized prostate cancer tumors OTUB1 was found overexpressed as compared to normal prostatic epithelial cells. Prostate cancer xenografts expressing reduced levels of OTUB1 exhibit reduced tumor growth and reduced metastatic dissemination in vivo. Conclusions OTUB1 mediates prostate cancer cell invasion through RhoA activation and promotes tumorigenesis in vivo. Our results suggest that drugs targeting the catalytic activity of OTUB1 could potentially be used as therapeutics for metastatic prostate cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700