Molecular imaging of hypoxia in non-small-cell lung cancer
详细信息    查看全文
  • 作者:Connie Yip (1) (2) (7)
    Philip J. Blower (3)
    Vicky Goh (1) (4)
    David B. Landau (1) (5)
    Gary J. R. Cook (1) (6)

    1. Department of Cancer Imaging
    ; Division of Imaging Sciences & Biomedical Engineering ; King鈥檚 College London ; St Thomas鈥?Hospital ; London ; UK
    2. Department of Radiation Oncology
    ; National Cancer Centre ; Singapore ; Singapore
    7. Imaging 2
    ; St Thomas鈥?Hospital ; Level 1 ; Lambeth Wing ; Lambeth Palace Road ; London ; SE1 7EH ; UK
    3. Department of Imaging Chemistry & Biology
    ; Division of Imaging Sciences & Biomedical Engineering ; King鈥檚 College London ; St Thomas鈥?Hospital ; London ; UK
    4. Department of Radiology
    ; Guy鈥檚 and St Thomas鈥?NHS Foundation Trust ; St Thomas鈥?Hospital ; London ; UK
    5. Department of Clinical Oncology
    ; Guy鈥檚 and St Thomas鈥?NHS Foundation Trust ; St Thomas鈥?Hospital ; London ; UK
    6. Clinical PET Imaging Centre
    ; Guy鈥檚 and St Thomas鈥?NHS Foundation Trust ; St Thomas鈥?Hospital ; London ; UK
  • 关键词:Non ; small ; cell lung cancer ; Hypoxia ; Oxygenation ; PET
  • 刊名:European Journal of Nuclear Medicine and Molecular Imaging
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:42
  • 期:6
  • 页码:956-976
  • 全文大小:619 KB
  • 参考文献:1. Ferlay, J, Shin, HR, Bray, F, Forman, D, Mathers, C, Parkin, DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: pp. 2893-2917 CrossRef
    2. Cancer Research UK. Lung cancer incidence statistics. Available at cancerresearchuk.org/cancer-info/cancerstats/types/lung/incidence/" class="a-plus-plus">http://www.cancerresearchuk.org/cancer-info/cancerstats/types/lung/incidence/. Accessed 7 Feb 2015.
    3. Cancer Research UK. Lung cancer survival statistics. Available at cancerresearchuk.org/cancer-info/cancerstats/types/lung/survival/" class="a-plus-plus">http://www.cancerresearchuk.org/cancer-info/cancerstats/types/lung/survival/. Accessed 7 Feb 2015.
    4. Hockel, M, Vaupel, P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93: pp. 266-276 CrossRef
    5. Vaupel, P, Mayer, A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26: pp. 225-239 CrossRef
    6. Hockel, M, Vorndran, B, Schlenger, K, Baussmann, E, Knapstein, PG (1993) Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 51: pp. 141-149 CrossRef
    7. Nordsmark, M, Overgaard, M, Overgaard, J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41: pp. 31-39 CrossRef
    8. Wilhelm, R, Kovacs, G, Heinrichsohn, D, Galalae, R, Kimmig, B (1998) Survival of exclusively irradiated patients with NSCLC. Significance of pretherapeutic hemoglobin level. Strahlenther Onkol 174: pp. 128-132 CrossRef
    9. Carreau, A, Hafny-Rahbi, B, Matejuk, A, Grillon, C, Kieda, C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15: pp. 1239-1253 CrossRef
    10. Le, QT, Chen, E, Salim, A, Cao, H, Kong, CS, Whyte, R (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12: pp. 1507-1514 CrossRef
    11. Horsman, MR, Wouters, BG, Joiner, MC, Overgaard, J The oxygen effect and fractionated radiotherapy. In: Joiner, M, Kogel, A eds. (2009) Basic clinical radiobiology. Hodder Arnold, London, pp. 207-216 CrossRef
    12. Gray, LH, Conger, AD, Ebert, M, Hornsey, S, Scott, OC (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: pp. 638-648 CrossRef
    13. Gilkes, DM, Semenza, GL, Wirtz, D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14: pp. 430-439 CrossRef
    14. Overgaard, J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25: pp. 4066-4074 CrossRef
    15. Bennett MH, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev. 2012;4:CD005007.
    16. Overgaard, J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck 鈥?a systematic review and meta-analysis. Radiother Oncol 100: pp. 22-32 CrossRef
    17. Langenbacher, M, Abdel-Jalil, RJ, Voelter, W, Weinmann, M, Huber, SM (2013) In vitro hypoxic cytotoxicity and hypoxic radiosensitization. Efficacy of the novel 2-nitroimidazole N,N,N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine. Strahlenther Onkol 189: pp. 246-254 CrossRef
    18. Beck, R, Roper, B, Carlsen, JM, Huisman, MC, Lebschi, JA, Andratschke, N (2007) Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J Nucl Med 48: pp. 973-980 CrossRef
    19. Janssens, GO, Rademakers, SE, Terhaard, CH, Doornaert, PA, Bijl, HP, Ende, P (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 30: pp. 1777-1783 CrossRef
    20. Hoskin, PJ, Rojas, AM, Bentzen, SM, Saunders, MI (2010) Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J Clin Oncol 28: pp. 4912-4918 CrossRef
    21. Toma-Dasu, I, Uhrdin, J, Antonovic, L, Dasu, A, Nuyts, S, Dirix, P (2012) Dose prescription and treatment planning based on FMISO-PET hypoxia. Acta Oncol 51: pp. 222-230 CrossRef
    22. Henriques de Figueiredo, B, Zacharatou, C, Galland-Girodet, S, Benech, J, Clermont-Gallerande, H, Lamare, F (2014) Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlenther Onkol.
    23. Chia, K, Fleming, IN, Blower, PJ (2012) Hypoxia imaging with PET: which tracers and why?. Nucl Med Commun 33: pp. 217-222 CrossRef
    24. Prekeges, JL, Rasey, JS, Grunbaum, Z, Krohn, KH (1991) Reduction of fluoromisonidazole, a new imaging agent for hypoxia. Biochem Pharmacol 42: pp. 2387-2395 CrossRef
    25. Walton, MI, Workman, P (1987) Nitroimidazole bioreductive metabolism. Quantitation and characterisation of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochem Pharmacol 36: pp. 887-896 CrossRef
    26. Chapman, JD, Baer, K, Lee, J (1983) Characteristics of the metabolism-induced binding of misonidazole to hypoxic mammalian cells. Cancer Res 43: pp. 1523-1528
    27. Lee, ST, Scott, AM (2007) Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 37: pp. 451-461 CrossRef
    28. Michalski, MH, Chen, X (2011) Molecular imaging in cancer treatment. Eur J Nucl Med Mol Imaging 38: pp. 358-377 CrossRef
    29. Saunders, ME, Dische, S, Anderson, P, Flockhart, IR (1978) The neurotoxicity of misonidazole and its relationship to dose, half-life and concentration in the serum. Br J Cancer Suppl 3: pp. 268-270
    30. Peeters, SG, Zegers, CM, Lieuwes, NG, Elmpt, W, Eriksson, J, Dongen, GA (2015) A comparative study of the hypoxia PET tracers [(18)F]HX4, [(18)F]FAZA, and [(18)F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys 91: pp. 351-359 CrossRef
    31. Bentzen, L, Keiding, S, Horsman, MR, Gronroos, T, Hansen, SB, Overgaard, J (2002) Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol 41: pp. 304-312 CrossRef
    32. Dubois, L, Landuyt, W, Haustermans, K, Dupont, P, Bormans, G, Vermaelen, P (2004) Evaluation of hypoxia in an experimental rat tumour model by [(18)F]fluoromisonidazole PET and immunohistochemistry. Br J Cancer 91: pp. 1947-1954 CrossRef
    33. Troost, EG, Laverman, P, Kaanders, JH, Philippens, M, Lok, J, Oyen, WJ (2006) Imaging hypoxia after oxygenation-modification: comparing [18F]FMISO autoradiography with pimonidazole immunohistochemistry in human xenograft tumors. Radiother Oncol 80: pp. 157-164 CrossRef
    34. Bentzen, L, Keiding, S, Nordsmark, M, Falborg, L, Hansen, SB, Keller, J (2003) Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67: pp. 339-344 CrossRef
    35. Gagel, B, Piroth, M, Pinkawa, M, Reinartz, P, Zimny, M, Kaiser, HJ (2007) pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia?. BMC Cancer 7: pp. 113 CrossRef
    36. Gagel, B, Reinartz, P, Dimartino, E, Zimny, M, Pinkawa, M, Maneschi, P (2004) pO(2) Polarography versus positron emission tomography ([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2鈥?deoxyglucose). An appraisal of radiotherapeutically relevant hypoxia. Strahlenther Onkol 180: pp. 616-622 CrossRef
    37. Zimny, M, Gagel, B, DiMartino, E, Hamacher, K, Coenen, HH, Westhofen, M (2006) FDG 鈥?a marker of tumour hypoxia? A comparison with [18F]fluoromisonidazole and pO2-polarography in metastatic head and neck cancer. Eur J Nucl Med Mol Imaging 33: pp. 1426-1431 CrossRef
    38. Mortensen, LS, Buus, S, Nordsmark, M, Bentzen, L, Munk, OL, Keiding, S (2010) Identifying hypoxia in human tumors: a correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode. Acta Oncol 49: pp. 934-940 CrossRef
    39. Chang, J, Wen, B, Kazanzides, P, Zanzonico, P, Finn, RD, Fichtinger, G (2009) A robotic system for 18F-FMISO PET-guided intratumoral pO2 measurements. Med Phys 36: pp. 5301-5309 CrossRef
    40. Carlin, S, Zhang, H, Reese, M, Ramos, NN, Chen, Q, Ricketts, SA (2014) A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers. J Nucl Med 55: pp. 515-521 CrossRef
    41. Koh, WJ, Bergman, KS, Rasey, JS, Peterson, LM, Evans, ML, Graham, MM (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33: pp. 391-398 CrossRef
    42. Koh, WJ, Rasey, JS, Evans, ML, Grierson, JR, Lewellen, TK, Graham, MM (1992) Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 22: pp. 199-212 CrossRef
    43. Rasey, JS, Koh, WJ, Evans, ML, Peterson, LM, Lewellen, TK, Graham, MM (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36: pp. 417-428 CrossRef
    44. Gagel, B, Reinartz, P, Demirel, C, Kaiser, HJ, Zimny, M, Piroth, M (2006) [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 6: pp. 51 CrossRef
    45. Eschmann, SM, Paulsen, F, Reimold, M, Dittmann, H, Welz, S, Reischl, G (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46: pp. 253-260
    46. Cherk, MH, Foo, SS, Poon, AM, Knight, SR, Murone, C, Papenfuss, AT (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J Nucl Med 47: pp. 1921-1926
    47. Chia, K, Weeks, AJ, Paul, RL, Cleij, M, Mullen, G, Blower, PJ (2010) Can PET hypoxia tracers predict radioresistance?. Nucl Med Biol 37: pp. 725 CrossRef
    48. Vera, P, Bohn, P, Edet-Sanson, A, Salles, A, Hapdey, S, Gardin, I (2011) Simultaneous positron emission tomography (PET) assessment of metabolism with (18)F-fluoro-2-deoxy-d-glucose (FDG), proliferation with (18)F-fluoro-thymidine (FLT), and hypoxia with (18)fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol 98: pp. 109-116 CrossRef
    49. Rasey, JS, Nelson, NJ, Chin, L, Evans, ML, Grunbaum, Z (1990) Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res 122: pp. 301-308 CrossRef
    50. Sorger, D, Patt, M, Kumar, P, Wiebe, LI, Barthel, H, Seese, A (2003) [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30: pp. 317-326 CrossRef
    51. Piert, M, Machulla, HJ, Picchio, M, Reischl, G, Ziegler, S, Kumar, P (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46: pp. 106-113
    52. Busk, M, Horsman, MR, Jakobsen, S, Keiding, S, Kogel, AJ, Bussink, J (2008) Imaging hypoxia in xenografted and murine tumors with 18F-fluoroazomycin arabinoside: a comparative study involving microPET, autoradiography, PO2-polarography, and fluorescence microscopy. Int J Radiat Oncol Biol Phys 70: pp. 1202-1212 CrossRef
    53. Busk, M, Mortensen, LS, Nordsmark, M, Overgaard, J, Jakobsen, S, Hansen, KV (2013) PET hypoxia imaging with FAZA: reproducibility at baseline and during fractionated radiotherapy in tumour-bearing mice. Eur J Nucl Med Mol Imaging 40: pp. 186-197 CrossRef
    54. Reischl, G, Dorow, DS, Cullinane, C, Katsifis, A, Roselt, P, Binns, D (2007) Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA 鈥?first small animal PET results. J Pharm Pharm Sci 10: pp. 203-211
    55. Maier, FC, Kneilling, M, Reischl, G, Cay, F, Bukala, D, Schmid, A (2011) Significant impact of different oxygen breathing conditions on noninvasive in vivo tumor-hypoxia imaging using [18F]-fluoro-azomycinarabino-furanoside ([(1)(8)F]FAZA). Radiat Oncol 6: pp. 165 CrossRef
    56. Postema, EJ, McEwan, AJ, Riauka, TA, Kumar, P, Richmond, DA, Abrams, DN (2009) Initial results of hypoxia imaging using 1-伪-D-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36: pp. 1565-1573 CrossRef
    57. Bollineni, VR, Kerner, GS, Pruim, J, Steenbakkers, RJ, Wiegman, EM, Koole, MJ (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III-IV non-small cell lung cancer patients. J Nucl Med 54: pp. 1175-1180 CrossRef
    58. Trinkaus, ME, Blum, R, Rischin, D, Callahan, J, Bressel, M, Segard, T (2013) Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57: pp. 475-481 CrossRef
    59. Yang, DJ, Wallace, S, Cherif, A, Li, C, Gretzer, MB, Kim, EE (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194: pp. 795-800 CrossRef
    60. Gronroos, T, Eskola, O, Lehtio, K, Minn, H, Marjamaki, P, Bergman, J (2001) Pharmacokinetics of [18F]FETNIM: a potential marker for PET. J Nucl Med 42: pp. 1397-1404
    61. Gronroos, T, Bentzen, L, Marjamaki, P, Murata, R, Horsman, MR, Keiding, S (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging 31: pp. 513-520 CrossRef
    62. Hu, M, Xing, L, Mu, D, Yang, W, Yang, G, Kong, L (2013) Hypoxia imaging with 18F-fluoroerythronitroimidazole integrated PET/CT and immunohistochemical studies in non-small cell lung cancer. Clin Nucl Med 38: pp. 591-596 CrossRef
    63. Li, L, Hu, M, Zhu, H, Zhao, W, Yang, G, Yu, J (2010) Comparison of 18F-fluoroerythronitroimidazole and 18F-fluorodeoxyglucose positron emission tomography and prognostic value in locally advanced non-small-cell lung cancer. Clin Lung Cancer 11: pp. 335-340 CrossRef
    64. Doss, M, Zhang, JJ, Belanger, MJ, Stubbs, JB, Hostetler, ED, Alpaugh, K (2010) Biodistribution and radiation dosimetry of the hypoxia marker 18F-HX4 in monkeys and humans determined by using whole-body PET/CT. Nucl Med Commun 31: pp. 1016-1024
    65. Dubois, LJ, Lieuwes, NG, Janssen, MH, Peeters, WJ, Windhorst, AD, Walsh, JC (2011) Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci U S A 108: pp. 14620-14625 CrossRef
    66. Loon, J, Janssen, MH, Ollers, M, Aerts, HJ, Dubois, L, Hochstenbag, M (2010) PET imaging of hypoxia using [18F]HX4: a phase I trial. Eur J Nucl Med Mol Imaging 37: pp. 1663-1668 CrossRef
    67. Zegers, CM, Elmpt, W, Wierts, R, Reymen, B, Sharifi, H, Ollers, MC (2013) Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 109: pp. 58-64 CrossRef
    68. Zegers, CM, Elmpt, W, Reymen, B, Even, AJ, Troost, EG, Ollers, MC (2014) In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [18F]HX4 and [18F]FDG-PET/CT imaging. Clin Cancer Res 20: pp. 6389-6397 CrossRef
    69. Kaneta, T, Takai, Y, Iwata, R, Hakamatsuka, T, Yasuda, H, Nakayama, K (2007) Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med 21: pp. 101-107 CrossRef
    70. Laughlin, KM, Evans, SM, Jenkins, WT, Tracy, M, Chan, CY, Lord, EM (1996) Biodistribution of the nitroimidazole EF5 (2-[2-nitro-1H-imidazol-1-yl]-N-(2,2,3,3,3-pentafluoropropyl) acetamide) in mice bearing subcutaneous EMT6 tumors. J Pharmacol Exp Ther 277: pp. 1049-1057
    71. Chitneni, SK, Bida, GT, Yuan, H, Palmer, GM, Hay, MP, Melcher, T (2013) 18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model. J Nucl Med 54: pp. 1339-1346 CrossRef
    72. Fujibayashi, Y, Taniuchi, H, Yonekura, Y, Ohtani, H, Konishi, J, Yokoyama, A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38: pp. 1155-1160
    73. Obata, A, Yoshimi, E, Waki, A, Lewis, JS, Oyama, N, Welch, MJ (2001) Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15: pp. 499-504 CrossRef
    74. Holland, JP, Barnard, PJ, Collison, D, Dilworth, JR, Edge, R, Green, JC (2008) Spectroelectrochemical and computational studies on the mechanism of hypoxia selectivity of copper radiopharmaceuticals. Chemistry 14: pp. 5890-5907 CrossRef
    75. Dearling, JL, Packard, AB (2010) Some thoughts on the mechanism of cellular trapping of Cu(II)-ATSM. Nucl Med Biol 37: pp. 237-243 CrossRef
    76. Maurer, RI, Blower, PJ, Dilworth, JR, Reynolds, CA, Zheng, Y, Mullen, GE (2002) Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem 45: pp. 1420-1431 CrossRef
    77. Bourgeois, M, Rajerison, H, Guerard, F, Mougin-Degraef, M, Barbet, J, Michel, N (2011) Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO 鈥?a selected review. Nucl Med Rev Cent East Eur 14: pp. 90-95 CrossRef
    78. Wong, TZ, Lacy, JL, Petry, NA, Hawk, TC, Sporn, TA, Dewhirst, MW (2008) PET of hypoxia and perfusion with 62Cu-ATSM and 62Cu-PTSM using a 62Zn/62Cu generator. AJR Am J Roentgenol 190: pp. 427-432 CrossRef
    79. Krohn, KA, Link, JM, Mason, RP (2008) Molecular imaging of hypoxia. J Nucl Med 49: pp. 129S-148S CrossRef
    80. Hueting, R, Kersemans, V, Cornelissen, B, Tredwell, M, Hussien, K, Christlieb, M (2014) A comparison of the behavior of (64)Cu-acetate and (64)Cu-ATSM in vitro and in vivo. J Nucl Med 55: pp. 128-134 CrossRef
    81. Burgman, P, O鈥橠onoghue, JA, Lewis, JS, Welch, MJ, Humm, JL, Ling, CC (2005) Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM. Nucl Med Biol 32: pp. 623-630 CrossRef
    82. Yuan, H, Schroeder, T, Bowsher, JE, Hedlund, LW, Wong, T, Dewhirst, MW (2006) Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 47: pp. 989-998
    83. Lewis, JS, Sharp, TL, Laforest, R, Fujibayashi, Y, Welch, MJ (2001) Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42: pp. 655-661
    84. Tateishi, K, Tateishi, U, Sato, M, Yamanaka, S, Kanno, H, Murata, H (2013) Application of 62Cu-diacetyl-bis(N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1alpha expression in patients with glioma. AJNR Am J Neuroradiol 34: pp. 92-99 CrossRef
    85. O鈥橠onoghue, JA, Zanzonico, P, Pugachev, A, Wen, B, Smith-Jones, P, Cai, S (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, PO2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61: pp. 1493-1502 CrossRef
    86. Matsumoto, K, Szajek, L, Krishna, MC, Cook, JA, Seidel, J, Grimes, K (2007) The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]fluoromisonidazole positron emission tomography. Int J Oncol 30: pp. 873-881
    87. Takahashi, N, Fujibayashi, Y, Yonekura, Y, Welch, MJ, Waki, A, Tsuchida, T (2000) Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med 14: pp. 323-328 CrossRef
    88. Lohith, TG, Kudo, T, Demura, Y, Umeda, Y, Kiyono, Y, Fujibayashi, Y (2009) Pathophysiologic correlation between 62Cu-ATSM and 18F-FDG in lung cancer. J Nucl Med 50: pp. 1948-1953 CrossRef
    89. Oh, M, Tanaka, T, Kobayashi, M, Furukawa, T, Mori, T, Kudo, T (2009) Radio-copper-labeled Cu-ATSM: an indicator of quiescent but clonogenic cells under mild hypoxia in a Lewis lung carcinoma model. Nucl Med Biol 36: pp. 419-426 CrossRef
    90. Dence, CS, Ponde, DE, Welch, MJ, Lewis, JS (2008) Autoradiographic and small-animal PET comparisons between (18)F-FMISO, (18)F-FDG, (18)F-FLT and the hypoxic selective (64)Cu-ATSM in a rodent model of cancer. Nucl Med Biol 35: pp. 713-720 CrossRef
    91. Obata, A, Yoshimoto, M, Kasamatsu, S, Naiki, H, Takamatsu, S, Kashikura, K (2003) Intra-tumoral distribution of (64)Cu-ATSM: a comparison study with FDG. Nucl Med Biol 30: pp. 529-534 CrossRef
    92. Dehdashti, F, Mintun, MA, Lewis, JS, Bradley, J, Govindan, R, Laforest, R (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30: pp. 844-850 CrossRef
    93. Zhang, T, Das, SK, Fels, DR, Hansen, KS, Wong, TZ, Dewhirst, MW (2013) PET with 62Cu-ATSM and 62Cu-PTSM is a useful imaging tool for hypoxia and perfusion in pulmonary lesions. AJR Am J Roentgenol 201: pp. W698-W706 CrossRef
    94. Handley, MG, Medina, RA, Mariotti, E, Kenny, GD, Shaw, KP, Yan, R (2014) Cardiac hypoxia imaging: second-generation analogues of 64Cu-ATSM. J Nucl Med 55: pp. 488-494 CrossRef
    95. Bowen, SR, Kogel, AJ, Nordsmark, M, Bentzen, SM, Jeraj, R (2011) Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 38: pp. 771-780 CrossRef
    96. Toma-Dasu, I, Dasu, A, Brahme, A (2009) Quantifying tumour hypoxia by PET imaging 鈥?a theoretical analysis. Adv Exp Med Biol 645: pp. 267-272 CrossRef
    97. Eschmann, SM, Paulsen, F, Bedeshem, C, Machulla, HJ, Hehr, T, Bamberg, M (2007) Hypoxia-imaging with (18)F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol 83: pp. 406-410 CrossRef
    98. Askoxylakis, V, Dinkel, J, Eichinger, M, Stieltjes, B, Sommer, G, Strauss, LG (2012) Multimodal hypoxia imaging and intensity modulated radiation therapy for unresectable non-small-cell lung cancer: the HIL trial. Radiat Oncol 7: pp. 157 CrossRef
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Nuclear Medicine
    Imaging and Radiology
    Orthopedics
    Cardiology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1619-7089
文摘
Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700