Environmental factors and human health: fibrous and particulate substance-induced immunological disorders and construction of a health-promoting living environment
详细信息    查看全文
  • 作者:Takemi Otsuki ; Hidenori Matsuzaki ; Suni Lee…
  • 关键词:Asbestos ; Silica ; Living environment ; NK cell ; T cell
  • 刊名:Environmental Health and Preventive Medicine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:2
  • 页码:71-81
  • 全文大小:1,791 KB
  • 参考文献:1.Otsuki T, Maeda M, Murakami S, Hayashi H, Miura Y, Kusaka M, et al. Immunological effects of silica and asbestos. Cell Mol Immunol. 2007;4:261–8.PubMed
    2.Maeda M, Nishimura Y, Kumagai N, Hayashi H, Hatayama T, Katoh M, et al. Dysregulation of the immune system caused by silica and asbestos. J Immunotoxicol. 2010;7:268–78. doi:10.​3109/​1547691X.​2010.​512579 .CrossRef PubMed
    3.Nishimura Y, Kumagai N, Maeda M, Hayashi H, Fukuoka K, Nakano T, et al. Suppressive effect of asbestos on cytotoxicity of human NK cells. Int J Immunopathol Pharmacol. 2011;24(1S):5S–10S.PubMed
    4.Kumagai-Takei N, Maeda M, Chen Y, Matsuzaki H, Lee S, Nishimura Y, et al. Asbestos induces reduction of tumor immunity. Clin Dev Immunol. 2011;2011:481439. doi:10.​1155/​2011/​481439 .CrossRef PubMed PubMedCentral
    5.Matsuzaki H, Maeda M, Lee S, Nishimura Y, Kumagai-Takei N, Hayashi H, et al. Asbestos-induced cellular and molecular alteration of immunocompetent cells and their relationship with chronic inflammation and carcinogenesis. J Biomed Biotechnol. 2012;2012:492608. doi:10.​1155/​2012/​492608 .CrossRef PubMed PubMedCentral
    6.Nishimura Y, Maeda M, Kumagai-Takei N, Lee S, Matsuzaki H, Wada Y, et al. Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med. 2013;18(3):198–204. doi:10.​1007/​s12199-013-0333-y .CrossRef PubMed PubMedCentral
    7.Matsuzaki H, Nishimura Y, Lee S, Maeda M, Kumagai-Takei N, Hayashi H, et al. Asbestos-induced mesothelioma: Tumor escape and alteration of immune surveillance. In: Pandalai SG, editor. Recent research developments in immunology, vol. 8. Kerala: Research Signpost Publisher; 2012. p. 13–31.
    8.Nishimura Y, Maeda M, Kumagai-Takei N, Matsuzaki H, Lee S, Fukuoka K, et al. Effect of asbestos on anti-tumor immunity and immunological alteration in patients with mesothelioma. In: Belli C, Anand S, editors. Malignant mesothelioma. Rijeka: InTech Open Access Publisher; 2012. doi:10.​5772/​33138 .
    9.Otsuki T, Maeda M, Miura Y, Hayashi H, Murakami S, Kumagai N, et al. Immunological effects of asbestos. In: Soto A, Salazar G, editors. Asbestos: risks, environment and impact. New York: Nova Science Publishers, Inc.; 2009. p. 185–93.
    10.Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009;153:143–52. doi:10.​1016/​j.​trsl.​2009.​01.​004 .CrossRef PubMed PubMedCentral
    11.Moolgavkar SH, Anderson EL, Chang ET, Lau EC, Turnham P, Hoel DG. A review and critique of U.S. EPA’s risk assessments for asbestos. Crit Rev Toxicol. 2014;44:499–522. doi:10.​3109/​10408444.​2014.​902423 .CrossRef PubMed
    12.Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 2010;42:133–9. doi:10.​1165/​rcmb.​2009-0206TR .CrossRef PubMed PubMedCentral
    13.Case BW, Abraham JL, Meeker G, Pooley FD, Pinkerton KE. Applying definitions of “asbestos” to environmental and “low-dose” exposure levels and health effects, particularly malignant mesothelioma. J Toxicol Environ Health B Crit Rev. 2011;14:3–39. doi:10.​1080/​10937404.​2011.​556045 .CrossRef PubMed PubMedCentral
    14.Hyodoh F, Takata-Tomokuni A, Miura Y, Sakaguchi H, Hatayama T, Hatada S, et al. Inhibitory effects of anti-oxidants on apoptosis of a human polyclonal T-cell line, MT-2, induced by an asbestos, chrysotile-A. Scand J Immunol. 2005;61:442–8.CrossRef PubMed
    15.Miura Y, Nishimura Y, Katsuyama H, Maeda M, Hayashi H, Dong M, et al. Involvement of IL-10 and Bcl-2 in resistance against an asbestos-induced apoptosis of T cells. Apoptosis. 2006;11:1825–35.CrossRef PubMed
    16.Maeda M, Chen Y, Hayashi H, Kumagai-Takei N, Matsuzaki H, Lee S, et al. Chronic exposure to asbestos enhances TGF-β1 production in the human adult T cell leukemia virus-immortalized T cell line MT-2. Int J Oncol. 2014;45:2522–32. doi:10.​3892/​ijo.​2014.​2682 .PubMed
    17.Hamano R, Wu X, Wang Y, Oppenheim JJ, Chen X. Characterization of MT-2 cells as a human regulatory T cell-like cell line. Cell Mol Immunol. 2014;. doi:10.​1038/​cmi.​2014.​123 .PubMed PubMedCentral
    18.Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC, et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol. 2006;18:269–77.CrossRef PubMed
    19.Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.CrossRef PubMed
    20.Linehan DC, Goedegebuure PS. CD25+CD4+ regulatory T-cells in cancer. Immunol Res. 2005;32:155–68.CrossRef PubMed
    21.Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16:115–23.CrossRef PubMed
    22.Ying C, Maeda M, Nishimura Y, Kumagai-Takei N, Hayashi H, Matsuzaki H, et al. Enhancement of regulatory T cell-like suppressive function in MT-2 by long-term and low-dose exposure to asbestos. Toxicology. 2015;338:86–94.CrossRef PubMed
    23.Maeda M, Chen Y, Kumagai-Takei N, Hayashi H, Matsuzaki H, Lee S, et al. Alteration of cytoskeletal molecules in a human T cell line caused by continuous exposure to chrysotile asbestos. Immunobiology. 2013;218:1184–91. doi:10.​1016/​j.​imbio.​2013.​04.​007 .CrossRef PubMed
    24.Nagai H, Toyokuni S. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci. 2012;103:1378–90. doi:10.​1111/​j.​1349-7006.​2012.​02326.​x .CrossRef PubMed
    25.Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, et al. Reduction of CXC chemokine receptor 3 in an in vitro model of continuous exposure to asbestos in a human T-cell line, MT-2. Am J Respir Cell Mol Biol. 2011;45:470–9. doi:10.​1165/​rcmb.​2010-0213OC .CrossRef PubMed
    26.Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, et al. Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients. Am J Respir Cell Mol Biol. 2011;45:795–803. doi:10.​1165/​rcmb.​2010-0435OC .CrossRef PubMed
    27.Hildebrandt GC, Corrion LA, Olkiewicz KM, Lu B, Lowler K, Duffner UA, et al. Blockade of CXCR3 receptor:ligand interactions reduces leukocyte recruitment to the lung and the severity of experimental idiopathic pneumonia syndrome. J Immunol. 2004;173:2050–9.CrossRef PubMed
    28.Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer. 2006;42:768–78.CrossRef PubMed
    29.Kumagai-Takei N, Nishimura Y, Maeda M, Hayashi H, Matsuzaki H, Lee S, et al. Effect of asbestos exposure on differentiation of cytotoxic T lymphocytes in mixed lymphocyte reaction of human peripheral blood mononuclear cells. Am J Respir Cell Mol Biol. 2013;49:28–36. doi:10.​1165/​rcmb.​2012-0134OC .CrossRef PubMed
    30.Kumagai-Takei N, Nishimura Y, Maeda M, Hayashi H, Matsuzaki H, Lee S, et al. Functional properties of CD8(+) lymphocytes in patients with pleural plaque and malignant mesothelioma. J Immunol Res. 2014;2014:670140. doi:10.​1155/​2014/​670140 .CrossRef PubMed PubMedCentral
    31.Nishimura Y, Miura Y, Maeda M, Kumagai N, Murakami S, Hayashi H, et al. Impairment in cytotoxicity and expression of NK cell-activating receptors on human NK cells following exposure to asbestos fibers. Int J Immunopathol Pharmacol. 2009;22:579–90.PubMed
    32.Nishimura Y, Maeda M, Kumagai N, Hayashi H, Miura Y, Otsuki T. Decrease in phosphorylation of ERK following decreased expression of NK cell-activating receptors in human NK cell line exposed to asbestos. Int J Immunopathol Pharmacol. 2009;22:879–88.PubMed
    33.Iannello S, Camuto M, Cantarella S, Cavaleri A, Ferriero P, Leanza A, et al. Rheumatoid syndrome associated with lung interstitial disorder in a dental technician exposed to ceramic silica dust. A case report and critical literature review. Clin Rheumatol. 2002;21:76–81.CrossRef PubMed
    34.Parks CG, Conrad K, Cooper GS. Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect. 1999;107(S5):793–802.CrossRef PubMed PubMedCentral
    35.Mayes MD. Epidemiologic studies of environmental agents and systemic autoimmune diseases. Environ Health Perspect. 1999;107(S5):743–8.CrossRef PubMed PubMedCentral
    36.Wu P, Miura Y, Hyodoh F, Nishimura Y, Hatayama T, Hatada S, et al. Reduced function of CD4+25+ regulatory T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2006;19:357–68.PubMed
    37.Otsuki T, Miura Y, Nishimura Y, Hyodoh F, Takata A, Kusaka M, et al. Alterations of Fas and Fas-related molecules in patients with silicosis. Exp Biol Med (Maywood). 2006;231:522–33.
    38.Lee S, Hayashi H, Maeda M, Chen Y, Matsuzaki H, Takei-Kumagai N, et al. Environmental factors producing autoimmune dysregulation—chronic activation of T cells caused by silica exposure. Immunobiology. 2012;217:743–8. doi:10.​1016/​j.​imbio.​2011.​12.​009 .CrossRef PubMed
    39.Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, Otsuki T, Kita S, et al. Elevated soluble Fas/APO-1 (CD95) levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumours. Clin Exp Immunol. 1997;110:303–9.CrossRef PubMed PubMedCentral
    40.Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Kawakami Y, et al. Soluble Fas mRNA is dominantly expressed in cases with silicosis. Immunology. 1998;94:258–62.CrossRef PubMed PubMedCentral
    41.Otsuki T, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, Isozaki Y, et al. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol. 2000;119:323–7.CrossRef PubMed PubMedCentral
    42.Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, et al. Detection of alternatively spliced variant messages of Fas gene and mutational screening of Fas and Fas ligand coding regions in peripheral blood mononuclear cells derived from silicosis patients. Immunol Lett. 2000;72:137–43.CrossRef PubMed
    43.Hayashi H, Maeda M, Murakami S, Kumagai N, Chen Y, Hatayama T, et al. Soluble interleukin-2 receptor as an indicator of immunological disturbance found in silicosis patients. Int J Immunopathol Pharmacol. 2009;22:53–62.PubMed
    44.Wu P, Hyodoh F, Hatayama T, Sakaguchi H, Hatada S, Miura Y, et al. Induction of CD69 antigen expression in peripheral blood mononuclear cells on exposure to silica, but not by asbestos/chrysotile-A. Immunol Lett. 2005;98:145–52.CrossRef PubMed
    45.Hayashi H, Miura Y, Maeda M, Murakami S, Kumagai N, Nishimura Y, et al. Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2010;23:1099–109.PubMed
    46.Ueki A, Isozaki Y, Kusaka M. Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles. J Occup Health. 2005;47:61–7.CrossRef PubMed
    47.Ueki A, Isozaki Y, Tomokuni A, Hatayama T, Ueki H, Kusaka M, et al. Intramolecular epitope spreading among anti-caspase-8 autoantibodies in patients with silicosis, systemic sclerosis and systemic lupus erythematosus, as well as in healthy individuals. Clin Exp Immunol. 2002;129:556–61.CrossRef PubMed PubMedCentral
    48.Tomokuni A, Otsuki T, Sakaguchi H, Isozaki Y, Hyodoh F, Kusaka M, et al. Detection of anti-topoisomerase I autoantibody in patients with silicosis. Environ Health Prev Med. 2002;7:7–10. doi:10.​1007/​BF02898059 .CrossRef PubMed PubMedCentral
    49.Ueki H, Kohda M, Nobutoh T, Yamaguchi M, Omori K, Miyashita Y, et al. Antidesmoglein autoantibodies in silicosis patients with no bullous diseases. Dermatology. 2001;202:16–21.CrossRef PubMed
    50.Takata-Tomokuni A, Ueki A, Shiwa M, Isozaki Y, Hatayama T, Katsuyama H, et al. Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis. Immunology. 2005;116:21–9.CrossRef PubMed PubMedCentral
    51.Otsuki T, Tomokuni A, Sakaguchi H, Hyodoh F, Kusaka M, Ueki A. Reduced expression of the inhibitory genes for Fas-mediated apoptosis in silicosis patients. J Occup Health. 2000;42:163–8.CrossRef
    52.Lee S, Matsuzaki H, Kumagai-Takei N, Yoshitome K, Maeda M, Chen Y, et al. Silica exposure and altered regulation of autoimmunity. Environ Health Prev Med. 2014;19:322–9. doi:10.​1007/​s12199-014-0403-9 .CrossRef PubMed PubMedCentral
    53.Lee S, Maeda M, Hayashi H, Matsuzaki H, Kumagai-Takei N, Nishimura Y, et al. Immunostimulation by silica particles and the development of autoimmune dysregulation. In: Duc GHT, editor. Immunostimulation. Rijeka: InTech Open Access Publisher; 2014. doi:10.​5772/​57544 .
    54.Takei-Kumagai N, Lee S, Matsuzaki H, Hayashi H, Maeda M, Nishimura Y, Otsuki T. Immunological effects of silica. In: Uversky VN, Kretsinger RH, Permyakov EA, editors. Encyclopedia of metalloproteins. New York: Springer Science + Business Media; 2013. p. 1965–71.CrossRef
    55.Kumagai N, Hayashi H, Maeda M, Miura Y, Nishimura Y, Matsuzaki H, et al. Immunological effects of silica and related dysregulation of autoimmunity. In: Mavragani CP, editor. Autoimmune disorders—pathogenetic aspects. Rijeka: InTech Open Access Publisher; 2011. p. 157–74. doi:10.​5772/​19218 .
    56.Hayashi H, Nishimura Y, Hyodo F, Maeda M, Kumagai N, Miura Y, et al. Dysregulation of autoimmunity caused by silica exposure: Fas-mediated apoptosis in T lymphocytes derived from silicosis patients. In: Petro ME, editor. Autoimmune disorders: symptoms, diagnosis and treatment. New York: Nova Science Publishers, Inc.; 2011. p. 293–301.
    57.Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181:8–18. doi:10.​1016/​j.​ajpath.​2012.​03.​044 .CrossRef PubMed
    58.Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2012;40:216–29. doi:10.​1177/​0192623311428481​ .CrossRef PubMed
    59.Ghoreschi K, Laurence A, Yang XP, Hirahara K, O’Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 2011;32:395–401. doi:10.​1016/​j.​it.​2011.​06.​007 .CrossRef PubMed PubMedCentral
    60.Otsuki T, Takahashi K, Mase A, Kawado T, Kotani M, Nishimura Y, et al. Establishment of negatively-charged indoor air conditions and their biological effects. In: Nemecek J, Schulz O, editors. Buildings and the environment. New York: Nova Science Publishers, Inc.; 2009. p. 201–14.
    61.Takahashi K, Otsuki T, Mase A, Kawado T, Kotani M, Ami K, et al. Negatively-charged air conditions and responses of the human psycho-neuro-endocrino-immune network. Environ Int. 2008;34:765–72. doi:10.​1016/​j.​envint.​2008.​01.​003 .CrossRef PubMed
    62.Takahashi K, Otsuki T, Mase A, Kawado T, Kotani M, Nishimura Y, et al. Two weeks of permanence in negatively-charged air conditions causes alteration of natural killer cell function. Int J Immunopathol Pharmacol. 2009;22:333–42.PubMed
    63.Nishimura Y, Takahashi K, Mase A, Kotani M, Ami K, Maeda M, et al. Exposure to negatively charged-particle dominant air-conditions on human lymphocytes in vitro activates immunological responses. 2015. doi:10.​1016/​j.​imbio.​2015.​07.​006 .
    64.Nishimura Y, Takahashi K, Mase A, Kotani M, Ami K, Maeda M, et al. Enhancement of NK cell cytotoxicity induced by long-term living in negatively charged-particle dominant indoor air-conditions. PLoS One. 2015. doi:10.​1371/​journal.​pone.​0132373 .
  • 作者单位:Takemi Otsuki (1)
    Hidenori Matsuzaki (1)
    Suni Lee (1)
    Naoko Kumagai-Takei (1)
    Shoko Yamamoto (1)
    Tamayo Hatayama (1)
    Kei Yoshitome (1)
    Yasumitsu Nishimura (1)

    1. Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
  • 刊物主题:Health Promotion and Disease Prevention; Public Health;
  • 出版者:Springer Japan
  • ISSN:1347-4715
文摘
Among the various scientific fields covered in the area of hygiene such as environmental medicine, epidemiology, public health and preventive medicine, we are investigating the immunological effects of fibrous and particulate substances in the environment and work surroundings, such as asbestos fibers and silica particles. In addition to these studies, we have attempted to construct health-promoting living conditions. Thus, in this review we will summarize our investigations regarding the (1) immunological effects of asbestos fibers, (2) immunological effects of silica particles, and (3) construction of a health-promoting living environment. This review article summarizes the 2014 Japanese Society for Hygiene (JSH) Award Lecture of the 85th Annual Meeting of the JSH entitled “Environmental health effects: immunological effects of fibrous and particulate matter and establishment of health-promoting environments” presented by the first author of this manuscript, Prof. Otsuki, Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan, the recipient of the 2014 JSH award. The results of our experiments can be summarized as follows: (1) asbestos fibers reduce anti-tumor immunity, (2) silica particles chronically activate responder and regulatory T cells causing an unbalance of these two populations of T helper cells, which may contribute to the development of autoimmune disorders frequently complicating silicosis, and (3) living conditions to enhance natural killer cell activity were developed, which may promote the prevention of cancers and diminish symptoms of virus infections.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700