Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling
详细信息    查看全文
  • 作者:Ihn Han (5)
    Miyong Yun (5)
    Eun-Ok Kim (5)
    Bonglee Kim (5)
    Min-Hyung Jung (6)
    Sung-Hoon Kim (5)

    5. Cancer Preventive Material Development Research Center
    ; College of Oriental Medicine ; Kyung Hee University ; 1 Hoegi-dong ; Dongdaemun-gu ; Seoul ; 130-701 ; Republic of Korea
    6. School of Medicine
    ; Kyung Hee University ; Seoul ; 130-701 ; Republic of Korea
  • 刊名:Stem Cell Research & Therapy
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:5
  • 期:2
  • 全文大小:926 KB
  • 参考文献:1. Jootar, S, Pornprasertsud, N, Petvises, S, Rerkamnuaychoke, B, Disthabanchong, S, Pakakasama, S, Ungkanont, A, Hongeng, S (2006) Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leukoc Res 30: pp. 1493-1498 CrossRef
    2. Iwamoto, S, Mihara, K, Downing, JR, Pui, CH, Campana, D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117: pp. 1049-1057 CrossRef
    3. Lescaudron, L, Naveilhan, P, Neveu, I (2012) The use of stem cells in regenerative medicine for Parkinson鈥檚 and Huntington鈥檚 diseases. Curr Med Chem 19: pp. 6018-6035 CrossRef
    4. Kim, YJ, Park, HJ, Lee, G, Bang, OY, Ahn, YH, Joe, E, Kim, HO, Lee, PH (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57: pp. 13-23 CrossRef
    5. Anzalone, R, Lo Iacono, M, Loria, T, Di Stefano, A, Giannuzzi, P, Farina, F, La Rocca, G (2010) Wharton鈥檚 jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 7: pp. 342-363 CrossRef
    6. Bersano, A, Ballabio, E, Lanfranconi, S, Boncoraglio, GB, Corti, S, Locatelli, F, Baron, P, Bresolin, N, Parati, E, Candelise, L (2010) Clinical studies in stem cells transplantation for stroke: a review. Curr Vasc Pharmacol 8: pp. 29-34 CrossRef
    7. Machavariani, PT, Dzhalabadze, XA, Areshidze, TX, Kirvalidze, IG (2013) Prospects of stem cells application in patients with ischemic heart disease. Georgian Med News 217: pp. 44-49
    8. Nesselmann, C, Ma, N, Bieback, K, Wagner, W, Ho, A, Konttinen, YT, Zhang, H, Hinescu, ME, Steinhoff, G (2008) Mesenchymal stem cells and cardiac repair. J Cell Mol Med 12: pp. 1795-1810 CrossRef
    9. Bartunek, J, Behfar, A, Vanderheyden, M, Wijns, W, Terzic, A (2008) Mesenchymal stem cells and cardiac repair: principles and practice. J Cardiovasc Transl Res 1: pp. 115-119 CrossRef
    10. Rubart, M, Field, LJ (2006) Cardiac repair by embryonic stem-derived cells. Handb Exp Pharmacol 174: pp. 73-100
    11. Puri, MC, Nagy, A (2012) Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30: pp. 10-14 CrossRef
    12. Fox, JM, Chamberlain, G, Ashton, BA, Middleton, J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137: pp. 491-502 CrossRef
    13. Hartmann, I, Hollweck, T, Haffner, S, Krebs, M, Meiser, B, Reichart, B, Eissner, G (2010) Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. J Immunol Methods 363: pp. 80-89 CrossRef
    14. Lu, LL, Liu, YJ, Yang, SG, Zhao, QJ, Wang, X, Gong, W, Han, ZB, Xu, ZS, Lu, YX, Liu, D, Chen, ZZ, Han, ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91: pp. 1017-1026
    15. Can, A, Karahuseyinoglu, S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25: pp. 2886-2895 CrossRef
    16. Zeddou, M, Briquet, A, Relic, B, Josse, C, Malaise, MG, Gothot, A, Lechanteur, C, Beguin, Y (2010) The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 34: pp. 693-701 CrossRef
    17. Wang, HS, Hung, SC, Peng, ST, Huang, CC, Wei, HM, Guo, YJ, Fu, YS, Lai, MC, Chen, CC (2004) Mesenchymal stem cells in the Wharton鈥檚 jelly of the human umbilical cord. Stem Cells 22: pp. 1330-1337 CrossRef
    18. Weiss, ML, Anderson, C, Medicetty, S, Seshareddy, KB, Weiss, RJ, VanderWerff, I, Troyer, D, McIntosh, KR (2008) Immune properties of human umbilical cord Wharton鈥檚 jelly-derived cells. Stem Cells 26: pp. 2865-2874 CrossRef
    19. La Rocca, G, Anzalone, R, Corrao, S, Magno, F, Loria, T, Lo Iacono, M, Di Stefano, A, Giannuzzi, P, Marasa, L, Cappello, F, Zummo, G, Farina, F (2009) Isolation and characterization of Oct-4+/HLA-G鈥?鈥塵esenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131: pp. 267-282 CrossRef
    20. Chen, K, Wang, D, Du, WT, Han, ZB, Ren, H, Chi, Y, Yang, SG, Zhu, D, Bayard, F, Han, ZC (2010) Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol 135: pp. 448-458 CrossRef
    21. Deuse, T, Stubbendorff, M, Tang-Quan, K, Phillips, N, Kay, MA, Eiermann, T, Phan, TT, Volk, HD, Reichenspurner, H, Robbins, RC, Schrepfer, S (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20: pp. 665-667
    22. Gondi, CS, Gogineni, VR, Chetty, C, Dasari, VR, Gorantla, B, Gujrati, M, Dinh, DH, Rao, JS (2010) Induction of apoptosis in glioma cells requires cell-to-cell contact with human umbilical cord blood stem cells. Int J Oncol 36: pp. 1165-1173
    23. Khakoo, AY, Pati, S, Anderson, SA, Reid, W, Elshal, MF, Rovira, II, Nguyen, AT, Malide, D, Combs, CA, Hall, G, Zhang, J, Raffeld, M, Rogers, TB, Stetler-Stevenson, W, Frank, JA, Reitz, M, Finkel, T (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi鈥檚 sarcoma. J Exp Med 203: pp. 1235-1247 CrossRef
    24. Chao, KC, Yang, HT, Chen, MW (2011) Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. J Cell Mol Med 16: pp. 1803-1815 CrossRef
    25. Sun, B, Roh, KH, Park, JR, Lee, SR, Park, SB, Jung, JW, Kang, SK, Lee, YS, Kang, KS (2009) Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 11: pp. 289-298 CrossRef
    26. Sanguinetti, A, Bistoni, G, Avenia, N (2011) Stem cells and breast cancer, where we are? A concise review of literature. G Chir 32: pp. 438-446
    27. Tian, X, Fu, R, Deng, L (2007) Method and conditions of isolation and proliferation of multipotent mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21: pp. 81-85
    28. Karahuseyinoglu, S, Cinar, O, Kilic, E, Kara, F, Akay, GG, Demiralp, DO, Tukun, A, Uckan, D, Can, A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25: pp. 319-331 CrossRef
    29. Han, I, Jeong, SJ, Lee, HJ, Koh, W, Lee, EO, Kim, HS, Lee, SJ, Chen, CY, Jung, MH, Kim, SH (2011) Proteomic analysis of mesenchymal stem-like cells derived from ovarian teratoma: potential role of glutathione S-transferase M2 in ovarian teratoma. Proteomics 11: pp. 352-360 CrossRef
    30. Gary, RK, Kindell, SM (2005) Quantitative assay of senescence-associated beta-galactosidase activity in mammalian cell extracts. Anal Biochem 343: pp. 329-334 CrossRef
    31. Carlin, R, Davis, D, Weiss, M, Schultz, B, Troyer, D (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4: pp. 8 CrossRef
    32. Molloy, AP, Martin, FT, Dwyer, RM, Griffin, TP, Murphy, M, Barry, FP, O鈥橞rien, T, Kerin, MJ (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124: pp. 326-332 CrossRef
    33. Honsawek, S, Dhitiseith, D, Phupong, V (2006) Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J Med Assoc Thai 89: pp. S189-S195
    34. Hollweck, T, Marschmann, M, Hartmann, I, Akra, B, Meiser, B, Reichart, B, Eblenkamp, M, Wintermantel, E, Eissner, G (2010) Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds. Biomed Mater 5: pp. 065004 CrossRef
    35. Hu, L, Hu, J, Zhao, J, Liu, J, Ouyang, W, Yang, C, Gong, N, Du, L, Khanal, A, Chen, L (2013) Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. Biomed Res Int 2013: pp. 438243
    36. Akimoto, K, Kimura, K, Nagano, M, Takano, S, To鈥檃 Salazar, G, Yamashita, T, Ohneda, O (2012) Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 22: pp. 1370-1386 CrossRef
    37. Strauer, BE, Schannwell, CM, Brehm, M (2009) Therapeutic potentials of stem cells in cardiac diseases. Minerva Cardioangiol 57: pp. 249-267
    38. Qiao, L, Xu, ZL, Zhao, TJ, Ye, LH, Zhang, XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269: pp. 67-77 CrossRef
    39. Ma, S, Liang, S, Jiao, H, Chi, L, Shi, X, Tian, Y, Yang, B, Guan, F (2014) Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of dickkopf-1 (DKK1). Mol Cell Biochem 385: pp. 277-286 CrossRef
    40. Ouyang, L, Shi, Z, Zhao, S, Wang, FT, Zhou, TT, Liu, B, Bao, JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45: pp. 487-498 CrossRef
    41. Elmore, S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35: pp. 495-516 CrossRef
    42. Chen, F (2012) JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res 72: pp. 379-386 CrossRef
    43. Aikin, R, Maysinger, D, Rosenberg, L (2004) Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 145: pp. 4522-4531 CrossRef
    44. Liang, L, Dong, C, Chen, X, Fang, Z, Xu, J, Liu, M, Zhang, X, Gu, DS, Wang, D, Du, W, Zhu, D, Han, ZC (2011) Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis. Cell Transplant 20: pp. 1395-1408 CrossRef
  • 刊物主题:Stem Cells; Cell Biology;
  • 出版者:BioMed Central
  • ISSN:1757-6512
文摘
Introduction Although mesenchymal stem cells (MSCs) have antitumor potential in hepatocellular carcinoma and breast cancer cells, the antitumor mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in prostate cancer cells still remains unclear. Thus, in the present study, we elucidated the antitumor activity of hUCMSCs in PC-3 prostate cancer cells in vitro and in vivo. Methods hUCMSCs were isolated from Wharton jelly of umbilical cord and characterized via induction of differentiations, osteogenesis, and adipogenesis. Antitumor effects of UCMSCs on tumor growth were evaluated in a co-culture condition with PC-3 prostate cancer cells. PC-3 cells were subcutaneously (sc) injected into the left flank of nude mice, and UCMSCs were sc injected into the right flank of the same mouse. Results We found that hUCMSCs inhibited the proliferation of PC-3 cells in the co-culture condition. Furthermore, co-culture of hUCMSCs induced the cleavage of caspase 9/3 and PARP, activated c-jun NH2-terminal kinase (JNK), and Bax, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/ AKT, extracellular signal-regulated kinase (ERK), and the expression of survival genes such as Bcl-2, Bcl-xL, Survivin, Mcl-1, and cIAP-1 in PC-3 cells in Western blotting assay. Conversely, we found that treatment of specific JNK inhibitor SP600125 suppressed the cleavages of caspase 9/3 and PARP induced by hUCMSCs in PC-3 cells by Western blotting and immunofluorescence assay. The homing of hUCMSCs to, and TUNEL-positive cells on, the K562 xenograft tumor region were detected in Nu/nu-BALB/c mouse. Conclusions These results suggest that UCMSCs inhibit tumor growth and have the antitumor potential for PC-3 prostate cancer treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700