Engrailed homeoproteins in visual system development
详细信息    查看全文
  • 作者:Andrea Wizenmann (1)
    Olivier Stettler (2)
    Kenneth L. Moya (3) (4)

    1. Department of Anatomy
    ; Institute of Clinical Anatomy and Cell Analysis ; University of T眉bingen ; 脰sterbergstrasse 3 ; 72074 ; T眉bingen ; Germany
    2. Laboratoire CRRET EAC 7149
    ; Universit茅 Paris-Est Cr茅teil ; 61 ; Av. du G茅n茅ral de Gaulle ; 94010 ; Cr茅teil Cedex ; France
    3. Coll猫ge de France
    ; Center for Interdisciplinary Research in Biology ; UMR CNRS 7241/INSERM U1050 ; 11 place Marcelin Berthelot ; 75005 ; Paris ; France
    4. Labex Memolife
    ; PSL Research University ; Paris ; France
  • 关键词:Visual system ; Retina ; Tectum ; Sensory map ; Homeoprotein ; Engrailed
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:72
  • 期:8
  • 页码:1433-1445
  • 全文大小:2,734 KB
  • 参考文献:1. McGinnis, W, Garber, RL, Wirz, J, Kuroiwa, A, Gehring, WJ (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: pp. 403-408
    2. Scott, MP, Weiner, AJ (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 81: pp. 4115-4119
    3. Quiring, R, Walldorf, U, Kloter, U, Gehring, WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: pp. 785-789
    4. Gehring, WJ (1996) The master control gene for morphogenesis and evolution of the eye. Genes Cells 1: pp. 11-15
    5. Gupta, SK, Orr, A, Bulman, D, Becker, I, Guernsey, DL, Neumann, PE (1999) A novel PAX6 frameshift mutation in a kindred from Atlantic Canada with familial aniridia. Can J Ophthalmol 34: pp. 330-334
    6. Graw, J (2004) Congenital hereditary cataracts. Int J Dev Biol 48: pp. 1031-1044
    7. Lesaffre, B, Joliot, A, Prochiantz, A, Volovitch, M (2007) Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Dev 2: pp. 2
    8. Bernard, C, Kim, HT, Torero Ibad, R, Lee, EJ, Simonutti, M, Picaud, S, Acampora, D, Simeone, A, Nardo, AA, Prochiantz, A, Moya, KL, Kim, JW (2014) Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes. Hum Mol Genet 23: pp. 1742-1753
    9. Torero Ibad, R, Rheey, J, Mrejen, S, Forster, V, Picaud, S, Prochiantz, A, Moya, KL (2011) Otx2 promotes the survival of damaged adult retinal ganglion cells and protects against excitotoxic loss of visual acuity in vivo. J Neurosci 31: pp. 5495-5503
    10. Sugiyama, S, Nardo, AA, Aizawa, S, Matsuo, I, Volovitch, M, Prochiantz, A, Hensch, TK (2008) Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134: pp. 508-520
    11. Beurdeley, M, Spatazza, J, Lee, HH, Sugiyama, S, Bernard, C, Nardo, AA, Hensch, TK, Prochiantz, A (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32: pp. 9429-9437
    12. Spatazza, J, Lullo, E, Joliot, A, Dupont, E, Moya, KL, Prochiantz, A (2013) Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed. Pharmacol Rev 65: pp. 90-104
    13. Eker, R (1929) The recessive mutant Engrailed in Drosophila melanogaster. Hereditas 12: pp. 217-222
    14. Garcia-Bellido, A, Santamaria, P (1972) Developmental analysis of the wing disc in the mutant engrailed of Drosophila melanogaster. Genetics 72: pp. 87-104
    15. Lawrence, PA, Morata, G (1976) Compartments in the wing of Drosophila: a study of the engrailed gene. Dev Biol 50: pp. 321-337
    16. Wieschaus, E (1980) A combined genetic and mosaic approach to the study of oogenesis in Drosophila. Basic Life Sci 16: pp. 85-94
    17. O鈥橣arrell, PH, Desplan, C, DiNardo, S, Kassis, JA, Kuner, JM, Sher, E, Theis, J, Wright, D (1985) Embryonic pattern in Drosophila: the spatial distribution and sequence-specific DNA binding of engrailed protein. Cold Spring Harb Symp Quant Biol 50: pp. 235-242
    18. Duman-Scheel, M, Patel, NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126: pp. 2327-2334
    19. Dolecki, GJ, Humphreys, T (1988) An engrailed class homeo box gene in sea urchins. Gene 64: pp. 21-31
    20. Kamb, A, Weir, M, Rudy, B, Varmus, H, Kenyon, C (1989) Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification. Proc Natl Acad Sci USA 86: pp. 4372-4376
    21. Wedeen, CJ, Price, DJ, Weisblat, DA (1991) Cloning and sequencing of a leech homolog to the Drosophila engrailed gene. FEBS Lett 279: pp. 300-302
    22. Holland, PW, Williams, NA, Lanfear, J (1991) Cloning of segment polarity gene homologues from the unsegmented brachiopod Terebratulina retusa (Linnaeus). FEBS Lett 291: pp. 211-213
    23. Webster, PJ, Mansour, TE (1992) Conserved classes of homeodomains in Schistosoma mansoni, an early bilateral metazoan. Mech Dev 38: pp. 25-32
    24. Wray, CG, Jacobs, DK, Kostriken, R, Vogler, AP, Baker, R, DeSalle, R (1995) Homologues of the engrailed gene from five molluscan classes. FEBS Lett 365: pp. 71-74
    25. Holland, LZ, Kene, M, Williams, NA, Holland, ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124: pp. 1723-1732
    26. Eriksson, BJ, Samadi, L, Schmid, A (2013) The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev genes evol 223: pp. 237-246
    27. Rosa, R, Grenier, JK, Andreeva, T, Cook, CE, Adoutte, A, Akam, M, Carroll, SB, Balavoine, G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399: pp. 772-776
    28. Joyner, AL, Kornberg, T, Coleman, KG, Cox, DR, Martin, GR (1985) Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene. Cell 43: pp. 29-37
    29. Gibert, JM (2002) The evolution of engrailed genes after duplication and speciation events. Dev Genes Evol 212: pp. 307-318
    30. Gardner, CA, Darnell, DK, Poole, SJ, Ordahl, CP, Barald, KF (1988) Expression of an engrailed-like gene during development of the early embryonic chick nervous system. J Neurosci Res 21: pp. 426-437
    31. Fjose, A, Eiken, HG, Njolstad, PR, Molven, A, Hordvik, I (1988) A zebrafish engrailed-like homeobox sequence expressed during embryogenesis. FEBS letters 231: pp. 355-360
    32. Hemmati-Brivanlou, A, Torre, JR, Holt, C, Harland, RM (1991) Cephalic expression and molecular characterization of Xenopus En-2. Development 111: pp. 715-724
    33. Smith, ST, Jaynes, JB (1996) A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122: pp. 3141-3150
    34. Dijk, MA, Murre, C (1994) Extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell 78: pp. 617-624
    35. Peltenburg, LT, Murre, C (1996) Engrailed and Hox homeodomain proteins contain a related Pbx interaction motif that recognizes a common structure present in Pbx. EMBO J 15: pp. 3385-3393
    36. Bourbon, HM, Martin-Blanco, E, Rosen, D, Kornberg, TB (1995) Phosphorylation of the Drosophila engrailed protein at a site outside its homeodomain enhances DNA binding. J Biol Chem 270: pp. 11130-11139
    37. Serrano, N, Maschat, F (1998) Molecular mechanism of polyhomeotic activation by Engrailed. EMBO J 17: pp. 3704-3713
    38. Nedelec, S, Foucher, I, Brunet, I, Bouillot, C, Prochiantz, A, Trembleau, A (2004) Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proc Natl Acad Sci USA 101: pp. 10815-10820
    39. Topisirovic, I, Ruiz-Gutierrez, M, Borden, KL (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64: pp. 8639-8642
    40. Brunet, I, Weinl, C, Piper, M, Trembleau, A, Volovitch, M, Harris, W, Prochiantz, A, Holt, C (2005) The transcription factor Engrailed-2 guides retinal axons. Nature 438: pp. 94-98
    41. Joliot, A, Maizel, A, Rosenberg, D, Trembleau, A, Dupas, S, Volovitch, M, Prochiantz, A (1998) Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr Biol 8: pp. 856-863
    42. Stettler, O, Moya, KL (2014) Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 35C: pp. 165-172
    43. Erskine, L, Herrera, E (2007) The retinal ganglion cell axon鈥檚 journey: insights into molecular mechanisms of axon guidance. Dev Biol 308: pp. 1-14
    44. Sperry, RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50: pp. 703-710
    45. Gierer, A (1981) Some physical, mathematical and evolutionary aspects of biological pattern formation. Philos Trans R Soc Lond B Biol Sci 295: pp. 429-440
    46. Gierer, A (1983) Model for the retino-tectal projection. Proc R Soc Lond B Biol Sci 218: pp. 77-93
    47. Gierer, A (1988) Spatial organization and genetic information in brain development. Biol Cybern 59: pp. 13-21
    48. Walter, J, Kern-Veits, B, Huf, J, Stolze, B, Bonhoeffer, F (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101: pp. 685-696
    49. Holt, CE, Harris, WA (1983) Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres. Nature 301: pp. 150-152
    50. Boxberg, Y, Deiss, S, Schwarz, U (1993) Guidance and topographic stabilization of nasal chick retinal axons on target-derived components in vitro. Neuron 10: pp. 345-357
    51. Godement, P, Bonhoeffer, F (1989) Cross-species recognition of tectal cues by retinal fibers in vitro. Development 106: pp. 313-320
    52. Wizenmann, A, Thies, E, Klostermann, S, Bonhoeffer, F, Bahr, M (1993) Appearance of target-specific guidance information for regenerating axons after CNS lesions. Neuron 11: pp. 975-983
    53. Kaprielian, Z, Patterson, PH (1994) The molecular basis of retinotectal topography. Bioessays 16: pp. 1-11
    54. Walter, J, Henke-Fahle, S, Bonhoeffer, F (1987) Avoidance of posterior tectal membranes by temporal retinal axons. Development 101: pp. 909-913
    55. Vielmetter, J, Stuermer, CA (1989) Goldfish retinal axons respond to position-specific properties of tectal cell membranes in vitro. Neuron 2: pp. 1331-1339
    56. Roskies, AL, O鈥橪eary, DD (1994) Control of topographic retinal axon branching by inhibitory membrane-bound molecules. Science 265: pp. 799-803
    57. Cox, EC, Muller, B, Bonhoeffer, F (1990) Axonal guidance in the chick visual system: posterior tectal membranes induce collapse of growth cones from the temporal retina. Neuron 4: pp. 31-37
    58. Johnston, AR, Gooday, DJ (1991) Xenopus temporal retinal neurites collapse on contact with glial cells from caudal tectum in vitro. Development 113: pp. 409-417
    59. Walter, J, Allsopp, TE, Bonhoeffer, F (1990) A common denominator of growth cone guidance and collapse?. Trends Neurosci 13: pp. 447-452
    60. Hindges, R, McLaughlin, T, Genoud, N, Henkemeyer, M, O鈥橪eary, D (2002) EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35: pp. 475-487
    61. Schmitt, AM, Shi, J, Wolf, AM, Lu, CC, King, LA, Zou, Y (2006) Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 439: pp. 31-37
    62. Barbera, AJ, Marchase, RB, Roth, S (1973) Adhesive recognition and retinotectal specificity. Proc Natl Acad Sci USA 70: pp. 2482-2486
    63. Stahl, B, M眉ller, B, Boxber, Y, Cox, EC, Bonhoeffer, F (1990) Biochemical characterization of a putative guidance molecule of the chick visual system. Neuron 5: pp. 735-743
    64. Muller, BK, Bonhoeffer, F, Drescher, U (1996) Novel gene families involved in neural pathfinding. Curr Opin Genet Dev 6: pp. 469-474
    65. Niederkofler, V, Salie, R, Sigrist, M, Arber, S (2004) Repulsive guidance molecule (RGM) gene function is required for neural tube closure but not retinal topography in the mouse visual system. J Neurosci 24: pp. 808-818
    66. Cheng, HJ, Nakamoto, M, Bergemann, AD, Flanagan, JG (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82: pp. 371-381
    67. Drescher, U, Kremoser, C, Handwerker, C, Loschinger, J, Noda, M, Bonhoeffer, F (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25聽kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82: pp. 359-370
    68. Nakamoto, M, Cheng, HJ, Friedmann, GC, McLaughlin, T, Hansen, MJ, Yoon, CH, O鈥橪eary, DD, Flanagan, JG (1996) Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86: pp. 755-766
    69. Monschau, B, Kremoser, C, Ohta, K, Tanaka, H, Kaneko, T, Yamada, T, Handwerker, C, Hornberger, MR, Loschinger, J, Pasquale, EB, Siever, DA, Verderame, MF, Muller, BK, Bonhoeffer, F, Drescher, U (1997) Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J 16: pp. 1258-1267
    70. Lemke G, Reber M (2005) Retinotectal mapping: new insights from molecular genetics. Annu Rev Cell Dev Biol 21:551鈥?80
    71. McLaughlin, T, O鈥橪eary, DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28: pp. 327-355
    72. Suetterlin, P, Marler, KM, Drescher, U (2012) Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol 23: pp. 1-6
    73. Hornberger, MR, Dutting, D, Ciossek, T, Yamada, T, Handwerker, C, Lang, S, Weth, F, Huf, J, Wessel, R, Logan, C, Tanaka, H, Drescher, U (1999) Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22: pp. 731-742
    74. Connor, RJ, Menzel, P, Pasquale, EB (1998) Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol 193: pp. 21-35
    75. Dutting, D, Handwerker, C, Drescher, U (1999) Topographic targeting and pathfinding errors of retinal axons following overexpression of ephrinA ligands on retinal ganglion cell axons. Dev Biol 216: pp. 297-311
    76. Ortalli, AL, Fiore, L, Napoli, J, Rapacioli, M, Salierno, M, Etchenique, R, Flores, V, Sanchez, V, Carri, NG, Scicolone, G (2012) EphA3 expressed in the chicken tectum stimulates nasal retinal ganglion cell axon growth and is required for retinotectal topographic map formation. PLoS One 7: pp. e38566
    77. Holash, JA, Pasquale, EB (1995) Polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system. Dev Biol 172: pp. 683-693
    78. Braisted, JE, McLaughlin, T, Wang, HU, Friedman, GC, Anderson, DJ, O鈥橪eary, DD (1997) Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev Biol 191: pp. 14-28
    79. Gale, NW, Holland, SJ, Valenzuela, DM, Flenniken, A, Pan, L, Ryan, TE, Henkemeyer, M, Strebhardt, K, Hirai, H, Wilkinson, DG, Pawson, T, Davis, S, Yancopoulos, GD (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17: pp. 9-19
    80. Birgbauer, E, Cowan, CA, Sretavan, DW, Henkemeyer, M (2000) Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127: pp. 1231-1241
    81. Mann, F, Ray, S, Harris, W, Holt, C (2002) Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35: pp. 461-473
    82. McLaughlin, T, Lim, YS, Santiago, A, O鈥橪eary, DD (2014) Multiple EphB receptors mediate dorsal-ventral retinotopic mapping via similar bi-functional responses to ephrin-B1. Mol Cell Neurosci.
    83. Sakuta, H, Takahashi, H, Shintani, T, Etani, K, Aoshima, A, Noda, M (2006) Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J Neurosci 26: pp. 10868-10878
    84. Marler KJ, Poopalasundaram S, Broom ER, Wentzel C, Drescher U (2010) Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance. Neural Dev 5:30. doi:10.1186/1749-8104-5-30
    85. Lim, YS, McLaughlin, T, Sung, TC, Santiago, A, Lee, KF, O'Leary, DD (2008) p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 59: pp. 746-758
    86. Huberman, AD, Feller, MB, Chapman, B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31: pp. 479-509
    87. Frisen, J, Yates, PA, McLaughlin, T, Friedman, GC, O鈥橪eary, DD, Barbacid, M (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20: pp. 235-243
    88. Feldheim, DA, Kim, YI, Bergemann, AD, Frisen, J, Barbacid, M, Flanagan, JG (2000) Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping [see comments]. Neuron 25: pp. 563-574
    89. Pfeiffenberger, C, Yamada, J, Feldheim, DA (2006) Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J Neurosci 26: pp. 12873-12884
    90. Triplett, JW, Feldheim, DA (2012) Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 23: pp. 7-15
    91. Martinez, S, Alvarado-Mallart, RM (1990) Expression of the homeobox Chick-en gene in chick/quail chimeras with inverted mes-metencephalic grafts. Dev Biol 139: pp. 432-436
    92. Davis, CA, Holmyard, DP, Millen, KJ, Joyner, AL (1991) Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111: pp. 287-298
    93. Millet, S, Alvarado-Mallart, RM (1995) Expression of the homeobox-containing gene En-2 during the development of the chick central nervous system. Eur J Neurosci 7: pp. 777-791
    94. Logan, C, Wizenmann, A, Drescher, U, Monschau, B, Bonhoeffer, F, Lumsden, A (1996) Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression. Curr Biol 6: pp. 1006-1014
    95. Wurst, W, Auerbach, AB, Joyner, AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120: pp. 2065-2075
    96. Joyner, AL, Herrup, K, Auerbach, BA, Davis, CA, Rossant, J (1991) Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251: pp. 1239-1243
    97. Millen, KJ, Wurst, W, Herrup, K, Joyner, AL (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120: pp. 695-706
    98. Joyner, AL (1996) Engrailed, Wnt and Pax genes regulate midbrain鈥揾indbrain development. Trends Genet 12: pp. 15-20
    99. Hanks, M, Wurst, W, Anson-Cartwright, L, Auerbach, AB, Joyner, AL (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2 [see comments]. Science 269: pp. 679-682
    100. Vail, J, Cowan, W (1971) The development of the chick optic tectum: I. Normal morphology and cytoarchitectonic development. Brain Res 28: pp. 391-419
    101. Senut, M, Alvarado-Mallart, R (1986) Development of the retinotectal system in normal quail embryos: cytoarchitectonic development and optic fiber innervation. Brain Res 394: pp. 123-140
    102. Ichijo, H, Fujita, S, Matsuno, T, Nakamura, H (1990) Rotation of the tectal primordium reveals plasticity of target recognition in retinotectal projection. Development 110: pp. 331-342
    103. Matsuno, T, Ichijo, H, Nakamura, H (1991) Regulation of the rostrocaudal axis of the optic tectum: histological study after rostrocaudal rotation in quail-chick chimeras. Brain Res Dev Brain Res 58: pp. 265-270
    104. Itasaki, N, Ichijo, H, Hama, C, Matsuno, T, Nakamura, H (1991) Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity. Development 113: pp. 1133-1144
    105. Alvarado-Mallart, RM, Martinez, S, Lance-Jones, CC (1990) Pluripotentiality of the 2-day-old avian germinative neuroepithelium. Dev Biol 139: pp. 75-88
    106. Araki, I, Nakamura, H (1999) Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development 126: pp. 5127-5135
    107. Omi, M, Harada, H, Watanabe, Y, Funahashi, J, Nakamura, H (2014) Role of En2 in the tectal laminar formation of chick embryos. Development 141: pp. 2131-2138
    108. Friedman, G, O鈥橪eary, D (1996) Retroviral Misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting or retinal axons. J Neurosci 16: pp. 5498-5509
    109. Itasaki, N, Nakamura, H (1996) A role for gradient en expression in positional specification of the optic tectum. Neuron 16: pp. 55-62
    110. Shigetani, Y, Funahashi, JI, Nakamura, H (1997) En-2 regulates the expression of the ligands for Eph type tyrosine kinases in chick embryonic tectum. Neurosci Res 27: pp. 211-217
    111. Thomas, M, Lazic, S, Beazley, L, Ziman, M (2004) Expression profiles suggest a role for Pax7 in the establishment of tectal polarity and map refinement. Exp Brain Res 156: pp. 263-273
    112. Retaux, S, Harris, WA (1996) Engrailed and retinotectal topography. Trends Neurosci 19: pp. 542-546
    113. Shamim, H, Mahmood, R, Logan, C, Doherty, P, Lumsden, A, Mason, I (1999) Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126: pp. 945-959
    114. Li Song, D, Joyner, AL (2000) Two Pax2/5/8-binding sites in Engrailed2 are required for proper initiation of endogenous mid-hindbrain expression. Mech Dev 90: pp. 155-165
    115. Lun, K, Brand, M (1998) A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125: pp. 3049-3062
    116. Reifers, F, Bohli, H, Walsh, EC, Crossley, PH, Stainier, DY, Brand, M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125: pp. 2381-2395
    117. McMahon, AP, Joyner, AL, Bradley, A, McMahon, JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5聽days postcoitum. Cell 69: pp. 581-595
    118. Schwarz, M, Alvarez-Bolado, G, Urbanek, P, Busslinger, M, Gruss, P (1997) Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: evidence from targeted mutations. Proc Natl Acad Sci USA 94: pp. 14518-14523
    119. Meyers, EN, Lewandoski, M, Martin, GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18: pp. 136-141
    120. McGrew, LL, Takemaru, K, Bates, R, Moon, RT (1999) Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mechanisms Dev 87: pp. 21-32
    121. Koenig, SF, Brentle, S, Hamdi, K, Fichtner, D, Wedlich, D, Gradl, D (2010) En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. Dev Biol 340: pp. 318-328
    122. Chen, Y, Mohammadi, M, Flanagan, JG (2009) Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels. Neuron 62: pp. 773-780
    123. Sugiyama, S, Funahashi, J, Nakamura, H (2000) Antagonizing activity of chick Grg4 against tectum-organizing activity. Dev Biol 221: pp. 168-180
    124. Merzdorf, CS, Sive, HL (2006) The zic1 gene is an activator of Wnt signaling. Int J Dev Biol 50: pp. 611-617
    125. Rhinn, M, Brand, M (2001) The midbrain鈥揾indbrain boundary organizer. Curr Opin Neurobiol 11: pp. 34-42
    126. Siegler, MV, Jia, XX (1999) Engrailed negatively regulates the expression of cell adhesion molecules connectin and neuroglian in embryonic Drosophila nervous system. Neuron 22: pp. 265-276
    127. Pezier, A, Jezzini, SH, Marie, B, Blagburn, JM (2014) Engrailed alters the specificity of synaptic connections of Drosophila auditory neurons with the giant fiber. J Neurosci 34: pp. 11691-11704
    128. Marie, B, Blagburn, JM (2003) Differential roles of engrailed paralogs in determining sensory axon guidance and synaptic target recognition. J Neurosci 23: pp. 7854-7862
    129. Marie, B, Cruz-Orengo, L, Blagburn, JM (2002) Persistent engrailed expression is required to determine sensory axon trajectory, branching, and target choice. J Neurosci 22: pp. 832-841
    130. Rogers, BT, Kaufman, TC (1996) Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development 122: pp. 3419-3432
    131. Boyan, G, Williams, L (2002) A single cell analysis of engrailed expression in the early embryonic brain of the grasshopper Schistocerca gregaria: ontogeny and identity of the secondary headspot cells. Arthropod Struct Dev 30: pp. 207-218
    132. Schmidt-Ott, U, Technau, GM (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116: pp. 111-125
    133. Urbach, R, Technau, GM, Breidbach, O (2003) Spatial and temporal pattern of neuroblasts, proliferation, and Engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera). Arthropod Struct Dev 32: pp. 125-140
    134. Brown, SJ, Patel, NH, Denell, RE (1994) Embryonic expression of the single Tribolium engrailed homolog. Dev Genet 15: pp. 7-18
    135. Urbach, R, Technau, GM (2003) Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod Struct Dev 32: pp. 103-123
    136. Sintoni, S, Fabritius-Vilpoux, K, Harzsch, S (2007) The engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda?. Dev Genes Evol 217: pp. 791-799
    137. Royet, J, Finkelstein, R (1995) Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development 121: pp. 3561-3572
    138. Aguilar-Hidalgo, D, Dominguez-Cejudo, MA, Amore, G, Brockmann, A, Lemos, MC, Cordoba, A, Casares, F (2013) A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes. Development 140: pp. 82-92
    139. Mayer, G (2006) Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods?. Arthropod Struct Dev 35: pp. 231-245
    140. Doeffinger, C, Hartenstein, V, Stollewerk, A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. J Comp Neurol 518: pp. 2612-2632
    141. Prochiantz, A, Joliot, A (2003) Can transcription factors function as cell-cell signalling molecules?. Nat Rev Mol Cell Biol 4: pp. 814-819
    142. Wizenmann, A, Brunet, I, Lam, JS, Sonnier, L, Beurdeley, M, Zarbalis, K, Weisenhorn-Vogt, D, Weinl, C, Dwivedy, A, Joliot, A, Wurst, W, Holt, C, Prochiantz, A (2009) Extracellular engrailed participates in the topographic guidance of retinal axons in vivo. Neuron 64: pp. 355-366
    143. Stettler, O, Joshi, RL, Wizenmann, A, Reingruber, J, Holcman, D, Bouillot, C, Castagner, F, Prochiantz, A, Moya, KL (2012) Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones. Development 139: pp. 215-224
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Engrailed is a homeoprotein transcription factor. This family of transcription factors is characterized by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and regulate protein translation in addition to gene transcription. Engrailed is intimately involved in the development of the vertebrate visual system. Early expression of Engrailed in dorsal mesencephalon contributes to the development and organization of a visual structure, the optic tectum/superior colliculus. This structure is an important target for retinal ganglion cell axons that carry visual information from the retina. Engrailed regulates the expression of Ephrin axon guidance cues in the tectum/superior colliculus. More recently it has been reported that Engrailed itself acts as an axon guidance cue in synergy with the Ephrin system and is proposed to enhance retinal topographic precision.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700