Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters
详细信息    查看全文
  • 作者:Joerg Roessiger ; Andrej Ficko ; Christian Clasen…
  • 关键词:Bio ; economic modeling ; Simultaneous optimization ; Close ; to ; nature forest management ; Continuous ; cover forestry ; Ecological dynamics ; Matrix transition model
  • 刊名:European Journal of Forest Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:135
  • 期:2
  • 页码:283-295
  • 全文大小:717 KB
  • 参考文献:Armstrong CW (2007) A note on the ecological–economic modelling of marine reserves in fisheries. Ecol Econ 62:242–250CrossRef
    Biolley HE (1922) Die Forsteinrichtung: auf der Grundlage der Erfahrung und insbesondere das Kontrollverfahren. Attinger Verlag
    Boncina A (2011) History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. For Int J For Res 84:467–478
    Brienen RJW, Zuidema PA (2007) Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front Ecol Environ 5:302–306CrossRef
    Bright G, Price C (2000) Valuing forest land under hazards to crop survival. For Int J For Res 73:361–370
    Bühl A (2008) SPSS 16, Einführung in die moderne Datenanalyse. Pearson Studium, München
    Bulte EH, van Kooten GC (1999) Meta population dynamics and stochastic bioeconomic modeling. Ecol Econ 30:293–299CrossRef
    Buongiorno J, Michie BR (1980) A matrix model of uneven-aged forest management. For Sci 26:609–625
    Buongiorno J, Dahir S, Lu H, Lin C (1994) Tree size diversity an economic returns in uneven-aged forest stands. For Sci 40:83–104
    Buongiorno J, Peyron JL, Houllier L, Bruciamacchie M (1995) Growth and management of mixed-species, uneven-aged forests in the French jura: implications for economic returns and tree diversity. For Sci 41:397–429
    Buongiorno J, Halvorsen EA, Bollandsås OM, Gobakken T, Hofstad O (2012) Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of the economic supply of carbon storage. Scand J For Res 27:460–473CrossRef
    Caswell H (2006) Matrix population models. Construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland
    Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. For Int J For Res 79:489–502
    Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) Nature 387:253–260
    Cotta H (1828) Anweisung zum Waldbau. Carl Heinrich Edmund von Berg
    Didion M, Kupferschmid AD, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate change on mountain forests. Clim Change 109:647–669CrossRef
    Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. For Policy Econ 2:157–166CrossRef
    Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51:431–445
    Faustmann M (1849) Berechnung des Werthes, welchen Waldboden, sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allgemeine Forst- und Jagdzeitung 15:441–451
    Ficko A, Poljanec A, Boncina A (2011) Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For Ecol Manag 261:844–854CrossRef
    Gayer K (1886) Der gemischte Wald: seine Begründung und Pflege, insbesondere durch Horst- und Gruppenwirtschaft. Paul Parey, Berlin
    Griess VC, Knoke T (2011) Growth performance, wind-throw, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1159CrossRef
    Griess VC, Knoke T (2013) Bioeconomic modelling of mixed Norway spruce—European beech stands: Economic consequences of considering ecological effects. Eur J For Res 132:511–522CrossRef
    Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296CrossRef
    Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207CrossRef
    Hanewinkel M, Kuhn T, Bugmann H, Lanz A, Brang P (2014) Vulnerability of uneven-aged forests to storm damage. For Int J For Res 87:525–534
    Hao Q, Meng F, Zhou Y, Wang J (2005) Determining the optimal selective harvest strategy for mixed-species stands with a transition matrix growth model. New For 29:207–219CrossRef
    Jübner D (2006) Ökonomische Modellanalyse zur Bewirtschaftung eines Plenterwaldes am Beispiel einer Versuchsfläche im Emmental, Schweiz. Diplomarbeit TU Dresden
    Klemperer WD (1996) Forest resource economics and finance. McGraw Hill, New York
    Knoke T (2003) Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecol Model 169:295–312CrossRef
    Knoke T (2012) The economics of continuous cover forestry. In: Pukkala T, von Gadow K (eds) Continuous cover forestry, vol 23, 2nd edn. Springer, Dordrecht, pp 167–193CrossRef
    Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech-Norway spruce stands in bioeconomic modeling. Ecol Model 210:487–498CrossRef
    Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species—a review on yield, ecological stability and economics. Eur J For Res 127:89–101CrossRef
    Kolmanic S, Guid N, Diaci J (2014) ForestMAS—A single tree based secondary succession model employing Ellenberg indicator values. Ecol Model 279:100–113CrossRef
    Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth Verlag, Hannover
    Kunstler G, Allen RB, Coomes DA, Canham CD, Wright EF (2011) SORTIE/NZ model development. Landcare Research Manaaki Whenua New Zealand Ltd 2011
    Kunstler G, Allen RB, Coomes DA, Canham CD, Wright EF (2013) Sustainable management, earthquake disturbances, and transient dynamics: modelling timber harvesting impacts in mixed-species forests. Ann For Sci 70:287–298CrossRef
    Leibundgut H (1986) Ziele und Wege der naturnahen Waldwirtschaft. Schweizerische Zeitschrift für Forstwesen 137:245–250
    Lin CR, Buongiorno J, Vasievich M (1996) A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood stands. Ecol Model 91:193–211CrossRef
    Lindenmayer D, Burgmann M (2005) Practical conservation biology. Csiro Publishing. ISBN: 0643090894
    Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRef
    Lindo Systems Inc (2012) “What’s Best”® version 12.0.1.5
    Linkevičius E (2014) Single Tree Level Simulator for Lituanian Pine Forests. Dissertation Technische Universität Dresden. Institute of Forest Growth and Forest Computer Sciences. Tharandt. http://​nbn-resolving.​de/​urn:​nbn:​de:​bsz:​14-qucosa-150330
    Lotka AJ (1931) The structure of a growing population. Hum Biol 3:459–493
    Mendoza G, Önal H, Soetjipto W (2000) Optimising tree diversity and economic returns from managed mixed forests in Kalimantan, Indonesia. J Trop For Sci 12:298–319
    Merganič J, Fabrika M (2011) Modelling natural regeneration in SYBILA tree growth simulator. Deutscher Verband Forstlicher Versuchsanstalten Sektion Ertragskunde. Beiträge zur Jahrestagung 6 bis 8. Juni 2011 Cottbus, herausgegeben von J. Nagel
    Microsoft Corporation (2010) Microsoft Excel®
    Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC
    Möhring B, Rüping U, Leefken G, Ziegeler M (2006) Die Annuität—ein “missing link” der Forstökonomie. Allgemeine Forst- und Jagdzeitung 177:21–29
    Monserud RA, Sterba H, Hasenauer H (1997) The single-tree stand growth simulator PROGNAUS. In: Teck R, Moeur M, Adams J (eds) Proceedings: forest vegetation simulator conference. Fort Collins, CO, USDA Forest Service Intermountain Research Station, Intermountain Research Station INT-GTR-373 pp 50–56
    Müller M (2009) Ein Matrix-Modell zur Prognose der Entwicklung ungleichaltriger Mischbestände im Stadtwald München. Diplomarbeit TU München
    Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn A, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol 21:935–946CrossRef
    Pretzsch H (2000) From yield tables to simulation models for pure and mixed stands. J For Sci 46:97–113
    Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRef
    Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21CrossRef
    Pretzsch H, Biber P, Schütze G, Bielak K (2013) Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For Ecol Manag 316:65–77CrossRef
    Prodan M (1949) Die theoretische Bestimmung des Gleichgewichtszustandes im Plenterwalde. Schweizische Zeitschrift für. Forstwesen 100:81–99
    Rämö J, Tahvonen O (2014) Economics of harvesting uneven-aged forest stands in Fennoscandia. Scand J For Res 29:777–792CrossRef
    Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. For Int J For Res 84:527–537
    Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T (2013) How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model 255:58–69CrossRef
    Saje R, Saražin J, Šeber R (2014) Žledolomi v slovenskih gozdovih. Gozdarski vestnik 72:204–210
    Schober R (1953) Ertragstafel und Forsteinrichtung. Forstwissenschaftliches Centralblatt 72:1–13CrossRef
    Schröder J, Röhle H, Münder K (2005) Simulation und Bewertung von Managementoptionen mit dem Waldwachstumssimulator BWINPro-S. Forst und Holz 60:411–415
    Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands and consequences for silviculture. Eur J For Res 125:291–302CrossRef
    Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbances on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220CrossRef
    SFS (1992/2003) Slovenia forest service. Forest inventory data. Permanent sample plot databases Ploskdv.dbf and Ploskev.dbf. Ljubljana
    SFS (2004) Slovenia Forest Service. Logging register 1995–2004. Database Timber.dbf. Slovenia Forest Service, Ljubljana
    SFS (2011) Regional forest management plan Postojna 2011–2020. Slovenia Forest Service, Slovenia, Postojna
    Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, New York
    Sonnemann D (2008) Das ideale Plentergleichgewicht—Leitbild oder Luxus? Essay. Schweizerische Zeitschrift für Forstwesen 159:1–7CrossRef
    SPSS Inc (2012) IBM® SPSS® Statistics Version 21
    Stancioiu PT, O’Hara KL (2006) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J For Res 125:151–162CrossRef
    Tahvonen O, Pukkala T, Laiho O, Lähde E, Niinimäki S (2010) Optimal management of uneven-aged Norway spruce stands. For Ecol Manag 260:106–115CrossRef
    Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402CrossRef
    Thomson TA (1991) Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. For Sci 37:461–480
    Thorpe HC, Thomas SC, Caspersen JP (2008) Tree mortality following partial harvests determined by skidding proximity. Ecol Appl 18:1652–1663CrossRef PubMed
    Tregubov V (1957) Gozdne rastlinske združbe. In: Tregubov V, Čokl M (eds.). Prebiralni gozdovi na Snežniku, Inštitut za gozdno in lesnogospodarstvo, Strokovna in znanstvena dela 4, Ljubljana, pp 23–65
    Utschig H, Neufanger M, Zanker T (2011) Das 100-Baum-Konzept als Einstieg für Durchforstungsregeln in Mischbeständen. Allgemeine Forstzeitschrift für Waldwirtschaft und Umweltvorsorge AFZ-Der Wald AFZ 21:4–6
    Valkonen S, Valsta L (2001) Productivity and economics of mixed two-storied spruce and birch stands in Southern Finland simulated with empirical models. For Ecol Manag 140:133–149CrossRef
    Vítková L, Dhubháin AN (2013) Transformation to continuous cover forestry: a review. Irish For 130:119–140
  • 作者单位:Joerg Roessiger (1) (2) (3)
    Andrej Ficko (2)
    Christian Clasen (1)
    Verena C. Griess (1) (4)
    Thomas Knoke (1)

    1. Institute of Forest Management, Department of Ecology and Ecosystem Management, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
    2. Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Vecna pot 83, 1000, Ljubljana, Slovenia
    3. National Forest Center - Forest Research Institute Zvolen, T. G. Masaryka 22, 96092, Zvolen, Slovakia
    4. Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
  • 刊物主题:Forestry; Plant Sciences; Plant Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1612-4677
文摘
This study presents economically optimal management of uneven-aged mixed mountain forests that takes into account tree growth variability. We divided 9846 silver fir (Abies alba), beech (Fagus sylvatica), and spruce (Picea abies) trees measured on 898 forest inventory plots in the Snežnik and Leskova dolina management units (4905 ha, Dinaric mountains, Slovenia) into three growth classes (slow-, medium-, and fast-growing trees) to simulate optimal forest management over a period of 100 years with respect to changing tree growth, stand density, diameter distribution, and tree species composition. We developed a density-dependent and stage and growth-structured matrix transition model which—simultaneous to the long-term stand dynamics projection—scheduled optimal harvesting to maximize the net present value using a nonlinear approach. The ecology of tree species was considered by using tree species-specific and stand-density and diameter-dependent logistic functions for ingrowth, transition, and mortality. The model projected a shift in tree species composition from fir-dominated to beech-dominated forests within 100 years. A change from harvesting slow- and fast-growing trees as if they all had medium growth to growth-sensitive harvesting increased the net revenue and maintained the uneven-aged stand structure. Optimal harvest diameters varied among growth classes, time periods, and tree species according to the economic maturity of individual trees and ranged from 12 (pre-commercial thinning) to 72 cm (target diameter). The simulation highlights the potential of improved bio-economic models for increasing yield from uneven-aged forests and scheduling optimal management regimes with multiple objectives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700