Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes
详细信息    查看全文
  • 作者:Adrian B Hehl (1)
    Walter U Basso (1)
    Christoph Lippuner (1) (2)
    Chandra Ramakrishnan (1)
    Michal Okoniewski (3)
    Robert A Walker (1) (4)
    Michael E Grigg (5)
    Nicholas C Smith (4)
    Peter Deplazes (1)

    1. Institute of Parasitology-University of Zurich
    ; Winterthurerstrasse 266a ; Z眉rich ; 8057 ; Switzerland
    2. Current address
    ; Department of Anaesthesiology and Pain Medicine ; Inselspital ; University of Bern ; Freiburgstrasse ; Bern ; 3010 ; Switzerland
    3. Functional Genomics Center Zurich
    ; Winterthurerstrasse 190 ; Z眉rich ; 8057 ; Switzerland
    4. Queensland Tropical Health Alliance Research Laboratory
    ; Faculty of Medicine ; Health and Molecular Sciences ; James Cook University ; Cairns Campus ; McGregor Road ; Smithfield ; QLD ; 4878 ; Australia
    5. Molecular Parasitology Section
    ; Laboratory of Parasitic Diseases ; NIAID ; NIH ; Bethesda ; Maryland ; USA
  • 关键词:Toxoplasma gondii ; Apicomplexa ; Coccidia ; Cat ; Enteroepithelial development ; Merozoite ; Schizont ; Comparative transcriptomics ; Surface antigen ; Stage ; specific gene expression
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,187 KB
  • 参考文献:1. Halonen, SK, Weiss, LM (2013) Toxoplasmosis. Handb Clin Neurol 114: pp. 125-45 CrossRef
    2. Jones, JL, Dubey, JP (2012) Foodborne toxoplasmosis. Clin Infect Dis 55: pp. 845-51 CrossRef
    3. Swierzy, IJ, Muhammad, M, Kroll, J, Abelmann, A, Tenter, AM, Luder, CG (2014) Toxoplasma gondii within skeletal muscle cells: a critical interplay for food-borne parasite transmission. Int J Parasitol 44: pp. 91-8 CrossRef
    4. Ferguson, DJ (2004) Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. Int J Parasitol 34: pp. 347-60 CrossRef
    5. Speer, CA, Dubey, JP (1998) Ultrastructure of early stages of infections in mice fed Toxoplasma gondii oocysts. Parasitology 116: pp. 35-42 CrossRef
    6. Kim, K, Weiss, LM (2008) Toxoplasma: the next 100聽years. Microbes Infect 10: pp. 978-84 CrossRef
    7. Torrey, EF, Yolken, RH (2013) Toxoplasma oocysts as a public health problem. Trends Parasitol 29: pp. 380-4 CrossRef
    8. Anders, S, Huber, W (2010) Differential expression analysis for sequence count data. Genome Biol 11: pp. R106 CrossRef
    9. Fritz, HM, Buchholz, KR, Chen, X, Durbin-Johnson, B, Rocke, DM, Conrad, PA (2012) Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One 7: pp. e29998 CrossRef
    10. Reid, AJ, Vermont, SJ, Cotton, JA, Harris, D, Hill-Cawthorne, GA, Konen-Waisman, S (2012) Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathog 8: pp. e1002567 CrossRef
    11. Gajria, B, Bahl, A, Brestelli, J, Dommer, J, Fischer, S, Gao, X (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36: pp. D553-6
    12. Colijn, C, Brandes, A, Zucker, J, Lun, DS, Weiner, B, Farhat, MR (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5: pp. e1000489 CrossRef
    13. Huthmacher, C, Hoppe, A, Bulik, S, Holzhutter, HG (2010) Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol 4: pp. 120 CrossRef
    14. Song, C, Chiasson, MA, Nursimulu, N, Hung, SS, Wasmuth, J, Grigg, ME (2013) Metabolic reconstruction identifies strain-specific regulation of virulence in Toxoplasma gondii. Mol Syst Biol 9: pp. 708 CrossRef
    15. Mouveaux, T, Oria, G, Werkmeister, E, Slomianny, C, Fox, BA, Bzik, DJ (2014) Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator. PLoS One 9: pp. e105820 CrossRef
    16. Yang, S, Parmley, SF (1997) Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184: pp. 1-12 CrossRef
    17. Chaudhary, K, Darling, JA, Fohl, LM, Sullivan, WJ, Donald, RG, Pfefferkorn, ER (2004) Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii. J Biol Chem 279: pp. 31221-7 CrossRef
    18. Wasmuth, JD, Pszenny, V, Haile, S, Jansen, EM, Gast, AT, Sher, A (2012) Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of Toxoplasma virulence. MBio 3: pp. 1-13 CrossRef
    19. Tonkin, ML, Arredondo, SA, Loveless, BC, Serpa, JJ, Makepeace, KA, Sundar, N (2013) Structural and biochemical characterization of Plasmodium falciparum 12 (Pf12) reveals a unique interdomain organization and the potential for an antiparallel arrangement with Pf41. J Biol Chem 288: pp. 12805-17 CrossRef
    20. Myler, PJ, Allison, J, Agabian, N, Stuart, K (1984) Antigenic variation in African trypanosomes by gene replacement or activation of alternate telomeres. Cell 39: pp. 203-11 CrossRef
    21. Rubio, JP, Thompson, JK, Cowman, AF (1996) The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. Embo J 15: pp. 4069-77
    22. Freitas-Junior, LH, Bottius, E, Pirrit, LA, Deitsch, KW, Scheidig, C, Guinet, F (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407: pp. 1018-22 CrossRef
    23. Marty, AJ, Thompson, JK, Duffy, MF, Voss, TS, Cowman, AF, Crabb, BS (2006) Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation. Mol Microbiol 62: pp. 72-83 CrossRef
    24. Jung, C, Lee, CY, Grigg, ME (2004) The SRS superfamily of Toxoplasma surface proteins. Int J Parasitol 34: pp. 285-96 CrossRef
    25. Carruthers, VB, Tomley, FM (2008) Microneme proteins in apicomplexans. Subcell Biochem 47: pp. 33-45 CrossRef
    26. Rabenau, KE, Sohrabi, A, Tripathy, A, Reitter, C, Ajioka, JW, Tomley, FM (2001) TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol Microbiol 41: pp. 537-47 CrossRef
    27. Reiss, M, Viebig, N, Brecht, S, Fourmaux, MN, Soete, M, Cristina, M (2001) Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 152: pp. 563-78 CrossRef
    28. Kessler, H, Herm-Gotz, A, Hegge, S, Rauch, M, Soldati-Favre, D, Frischknecht, F (2008) Microneme protein 8鈥揳 new essential invasion factor in Toxoplasma gondii. J Cell Sci 121: pp. 947-56 CrossRef
    29. Meissner, M, Reiss, M, Viebig, N, Carruthers, VB, Toursel, C, Tomavo, S (2002) A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 115: pp. 563-74
    30. Sheiner, L, Santos, JM, Klages, N, Parussini, F, Jemmely, N, Friedrich, N, Ward, GE, Soldati-Favre, D (2010) Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol Microbiol 77: pp. 912-29
    31. Opitz, C, Soldati, D (2002) 鈥楾he glideosome鈥? a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45: pp. 597-604 CrossRef
    32. Scholtyseck, E, Mehlhorn, H (1970) Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Z Parasitenkd 34: pp. 97-127 CrossRef
    33. Shaw, MK (1997) The same but different: the biology of Theileria sporozoite entry into bovine cells. Int J Parasitol 27: pp. 457-74 CrossRef
    34. Hehl, AB, Lekutis, C, Grigg, ME, Bradley, PJ, Dubremetz, JF, Ortega-Barria, E (2000) Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infect Immun 68: pp. 7078-86 CrossRef
    35. Meissner, M, Schluter, D, Soldati, D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298: pp. 837-40 CrossRef
    36. Alexander, DL, Mital, J, Ward, GE, Bradley, P, Boothroyd, JC (2005) Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1: pp. e17 CrossRef
    37. Beck, JR, Chen, AL, Kim, EW, Bradley, PJ (2014) RON5 Is Critical for Organization and Function of the Toxoplasma Moving Junction Complex. PLoS Pathog 10: pp. e1004025 CrossRef
    38. Poukchanski, A, Fritz, HM, Tonkin, ML, Treeck, M, Boulanger, MJ, Boothroyd, JC (2013) Toxoplasma gondii sporozoites invade host cells using two novel paralogues of RON2 and AMA1. PLoS One 8: pp. e70637 CrossRef
    39. Mital, J, Meissner, M, Soldati, D, Ward, GE (2005) Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16: pp. 4341-9 CrossRef
    40. Bargieri, DY, Andenmatten, N, Lagal, V, Thiberge, S, Whitelaw, JA, Tardieux, I (2013) Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Commun 4: pp. 2552 CrossRef
    41. Tyler, JS, Boothroyd, JC (2011) The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog 7: pp. e1001282 CrossRef
    42. Straub, KW, Peng, ED, Hajagos, BE, Tyler, JS, Bradley, PJ (2011) The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 7: pp. e1002007 CrossRef
    43. Lamarque, M, Besteiro, S, Papoin, J, Roques, M, Vulliez-Le Normand, B, Morlon-Guyot, J (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 7: pp. e1001276 CrossRef
    44. Besteiro, S, Dubremetz, JF, Lebrun, M (2011) The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 13: pp. 797-805 CrossRef
    45. Egarter, S, Andenmatten, N, Jackson, AJ, Whitelaw, JA, Pall, G, Black, JA (2014) The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion. PLoS One 9: pp. e91819 CrossRef
    46. Shaw, MK (2003) Cell invasion by Theileria sporozoites. Trends Parasitol 19: pp. 2-6 CrossRef
    47. Hemphill, A, Gottstein, B, Kaufmann, H (1996) Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitology 112: pp. 183-97 CrossRef
    48. Talevich, E, Kannan, N (2013) Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. BMC Evol Biol 13: pp. 117 CrossRef
    49. Jensen, KD, Hu, K, Whitmarsh, RJ, Hassan, MA, Julien, L, Lu, D (2013) Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15. Infect Immun 81: pp. 2156-67 CrossRef
    50. Yamamoto, M, Standley, DM, Takashima, S, Saiga, H, Okuyama, M, Kayama, H (2009) A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. J Exp Med 206: pp. 2747-60 CrossRef
    51. Fentress, SJ, Behnke, MS, Dunay, IR, Mashayekhi, M, Rommereim, LM, Fox, BA (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8: pp. 484-95 CrossRef
    52. Steinfeldt, T, Konen-Waisman, S, Tong, L, Pawlowski, N, Lamkemeyer, T, Sibley, LD (2010) Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 8: pp. e1000576 CrossRef
    53. Fleckenstein, MC, Reese, ML, Konen-Waisman, S, Boothroyd, JC, Howard, JC, Steinfeldt, T (2012) A Toxoplasma gondii pseudokinase inhibits host IRG resistance proteins. PLoS Biol 10: pp. e1001358 CrossRef
    54. Okada, T, Marmansari, D, Li, ZM, Adilbish, A, Canko, S, Ueno, A (2013) A novel dense granule protein, GRA22, is involved in regulating parasite egress in Toxoplasma gondii. Mol Biochem Parasitol 189: pp. 5-13 CrossRef
    55. Rosowski, EE, Lu, D, Julien, L, Rodda, L, Gaiser, RA, Jensen, KD (2011) Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med 208: pp. 195-212 CrossRef
    56. Rosowski, EE, Saeij, JP (2012) Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFNgamma induced gene expression and STAT1 phosphorylation. PLoS One 7: pp. e51448 CrossRef
    57. Jensen, KD, Wang, Y, Wojno, ED, Shastri, AJ, Hu, K, Cornel, L (2011) Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 9: pp. 472-83 CrossRef
    58. Virreira Winter, S, Niedelman, W, Jensen, KD, Rosowski, EE, Julien, L, Spooner, E (2011) Determinants of GBP recruitment to Toxoplasma gondii vacuoles and the parasitic factors that control it. PLoS One 6: pp. e24434 CrossRef
    59. Gov, L, Karimzadeh, A, Ueno, N, Lodoen, MB (2013) Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. MBio 4: pp. 1-11 CrossRef
    60. Braun, L, Brenier-Pinchart, MP, Yogavel, M, Curt-Varesano, A, Curt-Bertini, RL, Hussain, T (2013) A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J Exp Med 210: pp. 2071-86 CrossRef
    61. Bougdour, A, Durandau, E, Brenier-Pinchart, MP, Ortet, P, Barakat, M, Kieffer, S (2013) Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 13: pp. 489-500 CrossRef
    62. Gendrin, C, Bittame, A, Mercier, C, Cesbron-Delauw, MF (2010) Post-translational membrane sorting of the Toxoplasma gondii GRA6 protein into the parasite-containing vacuole is driven by its N-terminal domain. Int J Parasitol 40: pp. 1325-34 CrossRef
    63. Mercier, C, Adjogble, KD, Daubener, W, Delauw, MF (2005) Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites?. Int J Parasitol 35: pp. 829-49 CrossRef
    64. Magno, RC, Lemgruber, L, Vommaro, RC, Souza, W, Attias, M (2005) Intravacuolar network may act as a mechanical support for Toxoplasma gondii inside the parasitophorous vacuole. Microsc Res Tech 67: pp. 45-52 CrossRef
    65. Coppens, I, Dunn, JD, Romano, JD, Pypaert, M, Zhang, H, Boothroyd, JC (2006) Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125: pp. 261-74 CrossRef
    66. Ferguson, DJ, Jacobs, D, Saman, E, Dubremetz, JF, Wright, SE (1999) In vivo expression and distribution of dense granule protein 7 (GRA7) in the exoenteric (tachyzoite, bradyzoite) and enteric (coccidian) forms of Toxoplasma gondii. Parasitology 119: pp. 259-65 CrossRef
    67. Morris, MT, Carruthers, VB (2003) Identification and partial characterization of a second Kazal inhibitor in Toxoplasma gondii. Mol Biochem Parasitol 128: pp. 119-22 CrossRef
    68. Morris, MT, Coppin, A, Tomavo, S, Carruthers, VB (2002) Functional analysis of Toxoplasma gondii protease inhibitor 1. J Biol Chem 277: pp. 45259-66 CrossRef
    69. Pszenny, V, Davis, PH, Zhou, XW, Hunter, CA, Carruthers, VB, Roos, DS (2012) Targeted disruption of Toxoplasma gondii serine protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite tissue burden in mice. Infect Immun 80: pp. 1156-65 CrossRef
    70. Balaji, S, Babu, MM, Iyer, LM, Aravind, L (2005) Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33: pp. 3994-4006 CrossRef
    71. Walker, R, Gissot, M, Croken, MM, Huot, L, Hot, D, Kim, K (2013) The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol Microbiol 87: pp. 641-55 CrossRef
    72. Radke, JB, Lucas, O, Silva, EK, Ma, Y, Sullivan, WJ, Weiss, LM (2013) ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc Natl Acad Sci U S A 110: pp. 6871-6 CrossRef
    73. Walker, R, Gissot, M, Huot, L, Alayi, TD, Hot, D, Marot, G (2013) Toxoplasma transcription factor TgAP2XI-5 regulates the expression of genes involved in parasite virulence and host invasion. J Biol Chem 288: pp. 31127-38 CrossRef
    74. Behnke, MS, Wootton, JC, Lehmann, MM, Radke, JB, Lucas, O, Nawas, J (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One 5: pp. e12354 CrossRef
    75. Wang, T, Zhou, J, Gan, X, Wang, H, Ding, X, Chen, L (2014) Toxoplasma gondii induce apoptosis of neural stem cells via endoplasmic reticulum stress pathway. Parasitology 141: pp. 988-95 CrossRef
    76. Saksouk, N, Bhatti, MM, Kieffer, S, Smith, AT, Musset, K, Garin, J (2005) Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25: pp. 10301-14 CrossRef
    77. Lindner, SE, Silva, EK, Keck, JL, Llinas, M (2010) Structural determinants of DNA binding by a P. falciparum ApiAP2 transcriptional regulator. J Mol Biol 395: pp. 558-67 CrossRef
    78. Mercier, C, Lefebvre-Van Hende, S, Garber, GE, Lecordier, L, Capron, A, Cesbron-Delauw, MF (1996) Common cis-acting elements critical for the expression of several genes of Toxoplasma gondii. Mol Microbiol 21: pp. 421-8 CrossRef
    79. Cowper, B, Matthews, S, Tomley, F (2012) The molecular basis for the distinct host and tissue tropisms of coccidian parasites. Mol Biochem Parasitol 186: pp. 1-10 CrossRef
    80. Dijk, MR, Schaijk, BC, Khan, SM, Dooren, MW, Ramesar, J, Kaczanowski, S (2010) Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility. PLoS Pathog 6: pp. e1000853 CrossRef
    81. Jurankova, J, Opsteegh, M, Neumayerova, H, Kovarcik, K, Frencova, A, Balaz, V (2013) Quantification of Toxoplasma gondii in tissue samples of experimentally infected goats by magnetic capture and real-time PCR. Vet Parasitol 193: pp. 95-9 CrossRef
    82. Basso, W, Hartnack, S, Pardini, L, Maksimov, P, Koudela, B, Venturini, MC (2013) Assessment of diagnostic accuracy of a commercial ELISA for the detection of Toxoplasma gondii infection in pigs compared with IFAT, TgSAG1-ELISA and Western blot, using a Bayesian latent class approach. Int J Parasitol 43: pp. 565-70 CrossRef
    83. Rumble, SM, Lacroute, P, Dalca, AV, Fiume, M, Sidow, A, Brudno, M (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5: pp. e1000386 CrossRef
    84. David, M, Dzamba, M, Lister, D, Ilie, L, Brudno, M (2011) SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27: pp. 1011-2 CrossRef
    85. Anders, S, McCarthy, DJ, Chen, Y, Okoniewski, M, Smyth, GK, Huber, W (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8: pp. 1765-86 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The apicomplexan parasite Toxoplasma gondii is cosmopolitan in nature, largely as a result of its highly flexible life cycle. Felids are its only definitive hosts and a wide range of mammals and birds serve as intermediate hosts. The latent bradyzoite stage is orally infectious in all warm-blooded vertebrates and establishes chronic, transmissible infections. When bradyzoites are ingested by felids, they transform into merozoites in enterocytes and expand asexually as part of their coccidian life cycle. In all other intermediate hosts, however, bradyzoites differentiate exclusively to tachyzoites, and disseminate extraintestinally to many cell types. Both merozoites and tachyzoites undergo rapid asexual population expansion, yet possess different effector fates with respect to the cells and tissues they develop in and the subsequent stages they differentiate into. Results To determine whether merozoites utilize distinct suites of genes to attach, invade, and replicate within feline enterocytes, we performed comparative transcriptional profiling on purified tachyzoites and merozoites. We used high-throughput RNA-Seq to compare the merozoite and tachyzoite transcriptomes. 8323 genes were annotated with sequence reads across the two asexually replicating stages of the parasite life cycle. Metabolism was similar between the two replicating stages. However, significant stage-specific expression differences were measured, with 312 transcripts exclusive to merozoites versus 453 exclusive to tachyzoites. Genes coding for 177 predicted secreted proteins and 64 membrane- associated proteins were annotated as merozoite-specific. The vast majority of known dense-granule (GRA), microneme (MIC), and rhoptry (ROP) genes were not expressed in merozoites. In contrast, a large set of surface proteins (SRS) was expressed exclusively in merozoites. Conclusions The distinct expression profiles of merozoites and tachyzoites reveal significant additional complexity within the T. gondii life cycle, demonstrating that merozoites are distinct asexual dividing stages which are uniquely adapted to their niche and biological purpose.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700