Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS
详细信息    查看全文
  • 作者:Marc Suárez-Calvet ; Manuela Neumann ; Thomas Arzberger…
  • 关键词:Frontotemporal lobar degeneration (FTLD) ; Amyotrophic lateral sclerosis (ALS) ; Fused in sarcoma (FUS) ; Arginine methylation ; Neurodegeneration ; Protein arginine methyltransferase 1 (PRMT1) ; Transportin ; 1
  • 刊名:Acta Neuropathologica
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:131
  • 期:4
  • 页码:587-604
  • 全文大小:4,237 KB
  • 参考文献:1.Araya N, Hiraga H, Kako K, Arao Y, Kato S, Fukamizu A (2005) Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1. Biochem Biophys Res Commun 329:653–660. doi:10.​1016/​j.​bbrc.​2005.​02.​018 CrossRef PubMed
    2.Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13. doi:10.​1016/​j.​molcel.​2008.​12.​013 CrossRef PubMed PubMedCentral
    3.Belyanskaya LL, Delattre O, Gehring H (2003) Expression and subcellular localization of Ewing sarcoma (EWS) protein is affected by the methylation process. Exp Cell Res 288:374–381CrossRef PubMed
    4.Belyanskaya LL, Gehrig PM, Gehring H (2001) Exposure on cell surface and extensive arginine methylation of Ewing Sarcoma (EWS) protein. J Biol Chem 276:18681–18687. doi:10.​1074/​jbc.​M011446200 CrossRef PubMed
    5.Brelstaff J, Lashley T, Holton JL, Lees AJ, Rossor MN, Bandopadhyay R, Revesz T (2011) Transportin1: a marker of FTLD-FUS. Acta Neuropathol 122:591–600. doi:10.​1007/​s00401-011-0863-6 CrossRef PubMed
    6.Chen DH, Wu KT, Hung CJ, Hsieh M, Li C (2004) Effects of adenosine dialdehyde treatment on in vitro and in vivo stable protein methylation in HeLa cells. J Biochem 136:371–376. doi:10.​1093/​jb/​mvh131 CrossRef PubMed
    7.Chook YM, Süel KE (2011) Nuclear import by karyopherin-βs: recognition and inhibition. Biochim Biophys Acta 1813:1593–1606. doi:10.​1016/​j.​bbamcr.​2010.​10.​014 CrossRef PubMed PubMedCentral
    8.Deng Q, Holler CJ, Taylor G, Hudson KF, Watkins W, Gearing M, Ito D, Murray ME, Dickson DW, Seyfried NT, Kukar T (2014) FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. J Neurosci 34:7802–7813. doi:10.​1523/​jneurosci.​0172-14.​2014 CrossRef PubMed PubMedCentral
    9.Dhar S, Vemulapalli V, Patananan AN, Huang GL, Di Lorenzo A, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT (2013) Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311. doi:10.​1038/​srep01311 CrossRef PubMed PubMedCentral
    10.Dickson DW (2001) Neuropathology of Pick’s disease. Neurology 56:S16–S20CrossRef PubMed
    11.Dormann D, Capell A, Carlson AM, Shankaran SS, Rodde R, Neumann M, Kremmer E, Matsuwaki T, Yamanouchi K, Nishihara M, Haass C (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110:1082–1094. doi:10.​1111/​j.​1471-4159.​2009.​06211.​x CrossRef PubMed
    12.Dormann D, Haass C (2013) Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. Mol Cell Neurosci 56:475–486. doi:10.​1016/​j.​mcn.​2013.​03.​006 CrossRef PubMed
    13.Dormann D, Madl T, Valori CF, Bentmann E, Tahirovic S, Abou-Ajram C, Kremmer E, Ansorge O, Mackenzie IR, Neumann M, Haass C (2012) Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 31:4258–4275. doi:10.​1038/​emboj.​2012.​261 CrossRef PubMed PubMedCentral
    14.Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B, Neumann M, Haass C (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29:2841–2857. doi:10.​1038/​emboj.​2010.​143 CrossRef PubMed PubMedCentral
    15.Gardiner M, Toth R, Vandermoere F, Morrice NA, Rouse J (2008) Identification and characterization of FUS/TLS as a new target of ATM. Biochem J 415:297–307. doi:10.​1042/​BJ20081135 CrossRef PubMed
    16.Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13:372–387. doi:10.​1074/​mcp.​O113.​027870 CrossRef PubMed PubMedCentral
    17.Holm IE, Englund E, Mackenzie IR, Johannsen P, Isaacs AM (2007) A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 66:884–891. doi:10.​1097/​nen.​0b013e3181567f02​ CrossRef PubMed
    18.Holm IE, Isaacs AM, Mackenzie IR (2009) Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene. Acta Neuropathol 118:719–720. doi:10.​1007/​s00401-009-0593-1 CrossRef PubMed
    19.Hung CJ, Lee YJ, Chen DH, Li C (2009) Proteomic analysis of methylarginine-containing proteins in HeLa cells by two-dimensional gel electrophoresis and immunoblotting with a methylarginine-specific antibody. Protein J 28:139–147. doi:10.​1007/​s10930-009-9174-3 CrossRef PubMed
    20.Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N (2011) Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 69:152–162. doi:10.​1002/​ana.​22246 CrossRef PubMed
    21.Jobert L, Argentini M, Tora L (2009) PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp Cell Res 315:1273–1286. doi:10.​1016/​j.​yexcr.​2008.​12.​008 CrossRef PubMed
    22.Kino Y, Washizu C, Aquilanti E, Okuno M, Kurosawa M, Yamada M, Doi H, Nukina N (2011) Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic Acids Res 39:2781–2798. doi:10.​1093/​nar/​gkq1162 CrossRef PubMed PubMedCentral
    23.Klevernic IV, Morton S, Davis RJ, Cohen P (2009) Phosphorylation of Ewing’s sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage. Biochem J 418:625–634. doi:10.​1042/​BJ20082097 CrossRef PubMed
    24.Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. doi:10.​1126/​science.​1166066 CrossRef PubMed
    25.Van Langenhove T, van der Zee J, Sleegers K, Engelborghs S, Vandenberghe R, Gijselinck I, Van den Broeck M, Mattheijssens M, Peeters K, De Deyn PP, Cruts M, Van Broeckhoven C (2010) Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74:366–371. doi:10.​1212/​WNL.​0b013e3181ccc732​ CrossRef PubMed
    26.Lee HJ, Kim S, Pelletier J, Kim J (2004) Stimulation of hTAFII68 (NTD)-mediated transactivation by v-Src. FEBS Lett 564:188–198. doi:10.​1016/​S0014-5793(04)00314-X CrossRef PubMed
    27.Lee JM, Lee JS, Kim H, Kim K, Park H, Kim JY, Lee SH, Kim IS, Kim J, Lee M, Chung CH, Seo SB, Yoon JB, Ko E, Noh DY, Kim KI, Kim KK, Baek SH (2012) EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 48:572–586. doi:10.​1016/​j.​molcel.​2012.​09.​004 CrossRef PubMed
    28.Leemann-Zakaryan RP, Pahlich S, Grossenbacher D, Gehring H (2011) Tyrosine phosphorylation in the C-terminal nuclear localization and retention signal (C-NLS) of the EWS protein. Sarcoma 2011:218483. doi:10.​1155/​2011/​218483 CrossRef PubMed PubMedCentral
    29.Liu Q, Dreyfuss G (1995) In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 15:2800–2808CrossRef PubMed PubMedCentral
    30.Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE, Ince PG, Kamphorst W, Revesz T, Rozemuller AJ, Kumar-Singh S, Akiyama H, Baborie A, Spina S, Dickson DW, Trojanowski JQ, Mann DM (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4. doi:10.​1007/​s00401-009-0612-2 CrossRef PubMed PubMedCentral
    31.Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007. doi:10.​1016/​S1474-4422(10)70195-2 CrossRef PubMed
    32.Munoz DG, Neumann M, Kusaka H, Yokota O, Ishihara K, Terada S, Kuroda S, Mackenzie IR (2009) FUS pathology in basophilic inclusion body disease. Acta Neuropathol 118:617–627. doi:10.​1007/​s00401-009-0598-9 CrossRef PubMed
    33.Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRef PubMed
    34.Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O, Roeber S, Kretzschmar HA, Munoz DG, Kusaka H, Yokota O, Ang LC, Bilbao J, Rademakers R, Haass C, Mackenzie IR (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134:2595–2609. doi:10.​1093/​brain/​awr201 CrossRef PubMed PubMedCentral
    35.Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931. doi:10.​1093/​brain/​awp214 CrossRef PubMed PubMedCentral
    36.Neumann M, Roeber S, Kretzschmar HA, Rademakers R, Baker M, Mackenzie IR (2009) Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118:605–616. doi:10.​1007/​s00401-009-0581-5 CrossRef PubMed PubMedCentral
    37.Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi:10.​1126/​science.​1134108 CrossRef PubMed
    38.Neumann M, Valori CF, Ansorge O, Kretzschmar HA, Munoz DG, Kusaka H, Yokota O, Ishihara K, Ang LC, Bilbao JM, Mackenzie IR (2012) Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathol 124:705–716. doi:10.​1007/​s00401-012-1020-6 CrossRef PubMed
    39.Niu C, Zhang J, Gao F, Yang L, Jia M, Zhu H, Gong W (2012) FUS-NLS/Transportin 1 complex structure provides insights into the nuclear targeting mechanism of FUS and the implications in ALS. PLoS One 7:e47056. doi:10.​1371/​journal.​pone.​0047056 CrossRef PubMed PubMedCentral
    40.Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1:119–126. doi:10.​1038/​nmeth715 CrossRef PubMed
    41.Orozco D, Tahirovic S, Rentzsch K, Schwenk BM, Haass C, Edbauer D (2012) Loss of fused in sarcoma (FUS) promotes pathological Tau splicing. EMBO Rep 13:759–764. doi:10.​1038/​embor.​2012.​90 CrossRef PubMed PubMedCentral
    42.Ostareck-Lederer A, Ostareck DH, Rucknagel KP, Schierhorn A, Moritz B, Huttelmaier S, Flach N, Handoko L, Wahle E (2006) Asymmetric arginine dimethylation of heterogeneous nuclear ribonucleoprotein K by protein-arginine methyltransferase 1 inhibits its interaction with c-Src. J Biol Chem 281:11115–11125. doi:10.​1074/​jbc.​M513053200 CrossRef PubMed
    43.Pahlich S, Bschir K, Chiavi C, Belyanskaya L, Gehring H (2005) Different methylation characteristics of protein arginine methyltransferase 1 and 3 toward the Ewing Sarcoma protein and a peptide. Proteins 61:164–175. doi:10.​1002/​prot.​20579 CrossRef PubMed
    44.Pawlak MR, Scherer CA, Chen J, Roshon MJ, Ruley HE (2000) Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20:4859–4869. doi:10.​1128/​MCB.​20.​13.​4859-4869.​2000 CrossRef PubMed PubMedCentral
    45.Perreault A, Lemieux C, Bachand F (2007) Regulation of the nuclear poly(A)-binding protein by arginine methylation in fission yeast. J Biol Chem 282:7552–7562. doi:10.​1074/​jbc.​M610512200 CrossRef PubMed
    46.Rappsilber J, Friesen WJ, Paushkin S, Dreyfuss G, Mann M (2003) Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal Chem 75:3107–3114CrossRef PubMed
    47.Ravenscroft TA, Baker MC, Rutherford NJ, Neumann M, Mackenzie IR, Josephs KA, Boeve BF, Petersen R, Halliday GM, Kril J, van Swieten JC, Seeley WW, Dickson DW, Rademakers R (2013) Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiol Aging 34:2235.e11–2235.e13. doi:10.​1016/​j.​neurobiolaging.​2013.​04.​004
    48.Sylvestersen KB, Horn H, Jungmichel S, Jensen LJ, Nielsen ML (2014) Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest. Mol Cell Proteomics 13:2072–2088. doi:10.​1074/​mcp.​O113.​032748 CrossRef PubMed PubMedCentral
    49.Talbot K, Ansorge O (2006) Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. Hum Mol Genet 15:R182–R187. doi:10.​1093/​hmg/​ddl202 CrossRef PubMed
    50.Tang J, Frankel A, Cook RJ, Kim S, Paik K, Williams KR, Clarke S, Herschman HR (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275:7723–7730CrossRef PubMed
    51.Thandapani P, O’Connor TR, Bailey TL, Richard S (2013) Defining the RGG/RG motif. Mol Cell 50:613–623. doi:10.​1016/​j.​molcel.​2013.​05.​021 CrossRef PubMed
    52.Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S (2012) Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 21:136–149. doi:10.​1093/​hmg/​ddr448 CrossRef PubMed
    53.Troakes C, Hortobágyi T, Vance C, Al-Sarraj S, Rogelj B, Shaw CE (2013) Transportin 1 colocalization with Fused in Sarcoma (FUS) inclusions is not characteristic for amyotrophic lateral sclerosis-FUS confirming disrupted nuclear import of mutant FUS and distinguishing it from frontotemporal lobar degeneration with FUS inclusi. Neuropathol Appl Neurobiol 39:553–561. doi:10.​1111/​j.​1365-2990.​2012.​01300.​x CrossRef PubMed
    54.Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. doi:10.​1126/​science.​1165942 CrossRef PubMed PubMedCentral
    55.Vance C, Scotter EL, Nishimura AL, Troakes C, Mitchell JC, Kathe C, Urwin H, Manser C, Miller CC, Hortobágyi T, Dragunow M, Rogelj B, Shaw CE (2013) ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet 22:2676–2688. doi:10.​1093/​hmg/​ddt117 CrossRef PubMed PubMedCentral
    56.Yamaguchi A, Kitajo K (2012) The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS One 7:e49267. doi:10.​1371/​journal.​pone.​0049267 CrossRef PubMed PubMedCentral
    57.Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37–50. doi:10.​1038/​nrc3409 CrossRef PubMed
    58.Yu MC, Bachand F, McBride AE, Komili S, Casolari JM, Silver PA (2004) Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. Genes Dev 18:2024–2035. doi:10.​1101/​gad.​1223204 CrossRef PubMed PubMedCentral
    59.Zhang ZC, Chook YM (2012) Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc Natl Acad Sci 109:12017–12021. doi:10.​1073/​pnas.​1207247109 CrossRef PubMed PubMedCentral
    60.Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG (2012) Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. J Biol Chem 287:7859–7870. doi:10.​1074/​jbc.​M111.​336271 CrossRef PubMed PubMedCentral
  • 作者单位:Marc Suárez-Calvet (1) (7) (9)
    Manuela Neumann (3) (4)
    Thomas Arzberger (5) (6) (7)
    Claudia Abou-Ajram (1) (2)
    Eva Funk (1)
    Hannelore Hartmann (7) (8)
    Dieter Edbauer (7) (8)
    Elisabeth Kremmer (10)
    Christoph Göbl (11) (12)
    Moritz Resch (11) (12)
    Benjamin Bourgeois (11) (12)
    Tobias Madl (11) (12) (13) (14)
    Stefan Reber (15) (16)
    Daniel Jutzi (15)
    Marc-David Ruepp (15)
    Ian R. A. Mackenzie (17)
    Olaf Ansorge (18)
    Dorothee Dormann (1) (2) (8)
    Christian Haass (1) (7) (8)

    1. Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen Strasse 17, 81377, Munich, Germany
    7. German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen Strasse 17, 81377, Munich, Germany
    9. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
    3. Department of Neuropathology, University of Tübingen, 72076, Tübingen, Germany
    4. DZNE, German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
    5. Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, 80336, Munich, Germany
    6. Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
    2. BioMedical Center (BMC), Lehrstuhl Zellbiologie (Anatomie III), Großhaderner Strasse 9, 82152, Planegg-Martinsried, Germany
    8. Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
    10. Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 81377, Munich, Germany
    11. Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany
    12. Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
    13. Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010, Graz, Austria
    14. Omics Center Graz, BioTechMed, 8010, Graz, Austria
    15. Department of Chemistry and Biochemistry, University of Bern, 3012, Bern, Switzerland
    16. Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
    17. Department of Pathology, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
    18. Department of Neuropathology, John Radcliffe Hospital, Oxford, UK
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Pathology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0533
文摘
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700