Forced Convective Heat Transfer of MWCNT/Water Nanofluid Under Constant Heat Flux: An Experimental Investigation
详细信息    查看全文
  • 作者:Munish Gupta ; Rajesh Kumar ; Neeti Arora…
  • 关键词:Nanofluids ; Laminar flow ; Heat transfer enhancement ; Constant heat flux
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:2
  • 页码:599-609
  • 全文大小:1,199 KB
  • 参考文献:1.Kakaç, S.; Shah, R.K.; Aung, W. (eds.) Handbook of Single-Phase Convective Heat Transfer (pp. 7–1). Wiley, New York (1987)
    2.Jacobi A.M., Shah R.K.: Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp. Therm. Fluid Sci. 11(3), 295–309 (1995)CrossRef
    3.Gupta M., Kasana K.S., Vasudevan R.: A numerical study of the effect on flow structure and heat transfer of a rectangular winglet pair in a plate fin heat exchanger. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223(9), 2109–2115 (2009)CrossRef
    4.Selvam S., Thiyagarajan P.R., Suresh S.: Experimental studies on wire coiled coil matrix turbulators with and without centre core rod. Arab. J. Sci. Eng. 38(9), 2557–2568 (2013)CrossRef
    5.Sivasubramanian M., Kanna P.R., Uthayakumar M., Ganesan P.: Experimental investigation on heat transfer enhancement from a channel mounted with staggered blocks. Arab. J. Sci. Eng. 40(4), 1123–1139 (2015)CrossRef
    6.Bas H., Ozceyhan V.: Optimization of parameters for heat transfer and pressure drop in a tube with twisted tape inserts by using Taguchi method. Arab. J. Sci. Eng. 39(2), 1177–1186 (2014)CrossRef
    7.Iqbal Z., Ishaq M., Syed K.S.: Optimization of laminar convection on the shell-side of double pipe with triangular fins. Arab. J. Sci. Eng. 39(3), 2307–2321 (2014)CrossRef
    8.Ahuja A.S.: Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J. Appl. Phys. 46(8), 3408–3416 (1975)CrossRef
    9.Choi S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 231, 99–106 (1995)
    10.Ghadimi A., Saidur R., Metselaar H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54(17), 4051–4068 (2011)CrossRef
    11.Gupta M., Arora N., Kumar R., Kumar S., Dilbaghi N.: A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids. Int. J. Mech. Mater. Eng. 9(1), 1–21 (2014)CrossRef
    12.Yang Y., Zhang Z.G., Grulke E.A., Anderson W.B., Wu G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48(6), 1107–1116 (2005)CrossRef
    13.Yu W., France D.M., Timofeeva E.V., Singh D., Routbort J.L.: Comparative review of turbulent heat transfer of nanofluids. Int. J. Heat Mass Transf. 55(21), 5380–5396 (2012)CrossRef
    14.Balaji, N.; Kumar, P.S.M.; Velraj, R.; Kulasekharan, N.: Experimental investigations on the improvement of an air conditioning system with a nanofluid-based intercooler. Arab. J. Sci. Eng. 40(6), 1681–1693 (2015)
    15.Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998)CrossRef
    16.Chen H., Yang W., He Y., Ding Y., Zhang L., Tan C., Bavykin D.V.: Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 183(1), 63–72 (2008)CrossRef
    17.Garg P., Alvarado J.L., Marsh C., Carlson T.A., Kessler D.A., Annamalai K.: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transf. 52(21), 5090–5101 (2009)CrossRef
    18.Amrollahi A., Rashidi A.M., Lotfi R., Meibodi M.E., Kashefi K.: Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int. Commun. Heat Mass Transf. 37(6), 717–723 (2010)CrossRef
    19.Suresh S., Venkitaraj K.P., Selvakumar P., Chandrasekar M.: Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)CrossRef
    20.Hashemi S.M., Akhavan-Behabadi M.A.: An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux. Int. Commun. Heat Mass Transf. 39(1), 144–151 (2012)CrossRef
    21.Selvakumar P., Suresh S.: Convective performance of CuO/water nanofluid in an electronic heat sink. Exp. Therm. Fluid Sci. 40, 57–63 (2012)CrossRef
    22.Liu Z.H., Liao L.: Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added. Int. J. Therm. Sci. 49(12), 2331–2338 (2010)CrossRef
    23.Wang J., Zhu J., Zhang X., Chen Y.: Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp. Therm. Fluid Sci. 44, 716–721 (2013)CrossRef
    24.Gupta, M.; Kumar, R.; Arora, N.; Kumar, S.; Dilbagi, N.: Experimental investigation of the convective heat transfer characteristics of TiO2/distilled water nanofluids under constant heat flux boundary condition. J. Braz. Soc. Mech. Sci. Eng. 1–10
    25.Nasiri A., Shariaty-Niasar M., Rashidi A.M., Khodafarin R.: Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transf. 55(5), 1529–1535 (2012)CrossRef
    26.Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125(4), 567–574 (2003)CrossRef
    27.Xuan Y., Roetzel W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)MATH CrossRef
    28.Drew D.A., Passman S.L.: Theory of multi-component fluids. Springer, Berlin (1999)CrossRef
    29.Maxwell J.C.: A treatise on electricity and magnetism, vol. 1435, 2nd edn. Clarendon press, Oxford (1881)
    30.Shah, R.K.: Thermal entry length solutions for the circular tube and parallel plates. In Third National Heat Mass Transfer Conference, Indian Institute of Technology, Bombay, India (Vol. 1, pp. 11–75). (1975)
    31.Yu W., France D.M., Timofeeva E.V., Singh D., Routbort J.L.: Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl. Phys. Lett. 96(21), 213109 (2010)CrossRef
    32.Yu W., France D.M., Timofeeva E.V., Singh D., Routbort J.L.: Comparative review of turbulent heat transfer of nanofluids. Int. J. Heat Mass Transf. 55(21), 5380–5396 (2012)CrossRef
    33.Ding Y., Alias H., Wen D., Williams R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 49(1), 240–250 (2006)CrossRef
    34.Kayhani M.H., Soltanzadeh H., Heyhat M.M., Nazari M., Kowsary F.: Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int. Commun. Heat Mass Transf. 39(3), 456–462 (2012)CrossRef
    35.Xuan Y., Li Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125(1), 151–155 (2003)CrossRef
    36.Yang Y., Zhang Z.G., Grulke E.A., Anderson W.B., Wu G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48(6), 1107–1116 (2005)CrossRef
    37.Wen D., Ding Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47(24), 5181–5188 (2004)CrossRef
    38.Beckwith T.G., Marangoni R.D., Lienhard J.H.: Mechanical measurements, 6th edn. Pearson Prentice Hall, Upper Saddle River, NJ (2007)
  • 作者单位:Munish Gupta (1)
    Rajesh Kumar (1)
    Neeti Arora (1)
    Sandeep Kumar (2)
    Neeraj Dilbagi (2)

    1. Department of Mechanical Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
    2. Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Mathematics
    Science, general
  • 出版者:Springer Berlin / Heidelberg
文摘
This research article investigates the effect of multi-walled carbon nanotubes (MWCNT)/water nanofluid on convective heat transfer in a uniformly heated copper tube under laminar flow regime. The MWCNT were synthesized using chemical vapor deposition method and characterized using transmission electron microscope. These nanoparticles were dispersed (with 0.05, 0.1, 0.3 and 0.5 % weight concentrations) in distilled water to form stable suspensions of nanofluids. The heat transfer coefficients (HTC) of nanofluids and distilled water (base fluid) were evaluated and compared using constant velocity basis. The thermophysical properties of nanofluids change with the addition of nanoparticles; thus, we have considered the constant velocity criteria which provide the true comparison in contrast to constant Reynolds number used by earlier researchers. The effect of flow velocity (0.166–0.232 m/s) and nanoparticles weight concentration on the HTC considering constant heat flux boundary conditions was studied. It is observed that with the increase in the weight concentration of nanoparticles or flow velocity, the HTC increases. Nanofluids show higher HTC with respect to distilled water at all the concentrations of nanoparticles. At 0.5 wt.% weight concentration and flow velocity of 0.232 m/s, the maximum HTC obtained is 77.60 % in comparison with distilled water. Keywords Nanofluids Laminar flow Heat transfer enhancement Constant heat flux

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700