Deposition of graphene/graphene-related phases on different substrates by thermal decomposition of acetone
详细信息    查看全文
  • 作者:T. I. Milenov ; I. Avramova ; E. Valcheva ; S. S. Tinchev
  • 关键词:Chemical vapor deposition ; Graphene ; Raman spectroscopy ; X ; ray photoelectron spectroscopy
  • 刊名:Optical and Quantum Electronics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:48
  • 期:2
  • 全文大小:1,570 KB
  • 参考文献:Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)CrossRef
    Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenko, A.N., Conrad, E.H., First, P.N.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. 108, 19912–19916 (2004)CrossRef
    Berger, C., Song, Z., Li, T., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Marchenko, A.N., Conrad, E.H.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)CrossRef ADS
    Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 1–3 (2007). (063124) CrossRef
    Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien. Z. Anorg. Allg. Chem. 316, 119–127 (1962)CrossRef
    Bradshaw, A.M., Cederbaum, S.L., Domcke, W., Krause, U.: Plasmon coupling to core hole excitations in carbon. J. Phys. C Solid State 7, 4503–4512 (1974)CrossRef ADS
    Dhar, S., Roy Barman, A., Ni, G.X., Wang, X., Xu, X.F., Zheng, Y., Tripathy, S., Ariando, Rusydi, A., Loh, K.P., Rubhausen, M., Castro Neto, A.H., Özyilmaz, B., Venkatesan, T.: A new route to graphene layers by selective laser ablation. AIP Adv. 1, 1–8 (2011). (022109) CrossRef
    Díaz, J., Paolicelli, G., Ferrer, S., Comin, F.: Separation of the sp 3 and sp 2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064–8069 (1996)CrossRef ADS
    Dortmund Data Bank Explorer V: http://​www.​ddbst.​com (2015)
    Dwivedi, N., Kumar, S., Malik, H.K., Govind, Rauthan, C.M.S., Panwar, O.S.: Correlation of sp 3 and sp 2 fraction of carbon with electrical, optical and nano-mechanical properties of argondiluted diamond-like carbon films. Appl. Surf. Sci. 257, 6804–6810 (2011)CrossRef ADS
    Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef ADS
    Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef ADS
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2007)CrossRef ADS
    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)CrossRef ADS
    Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B 64, 075414–075426 (2001)CrossRef ADS
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef ADS
    Haerle, R., Riedo, E., Pasquarello, A., Baldereschi, A.: sp 2 /sp 3 hybridization ratio in amorphous carbon from C1s core level shifts: X-ray photoelectron spectroscopy and firstprinciples calculation. Phys. Rev. B 65, 1–9 (2001). (045101) CrossRef
    Herziger, F., Tyborski, C., Ochedowski, O., Schleberger, M., Maultzsch, J.: Double-resonant LA phonon scattering in defective graphene and carbon nanotubes. Phys. Rev. B 90, 1–6 (2014). (245431) CrossRef
    Johnson, J.A., Holland, D., Woodford, J.B., Zinovev, A., Gee, I.A., Eryilmaz, O.L., Erdemir, A.: Top surface characterization of a near frictionless carbon film. Diam. Relat. Mater. 16, 209–215 (2007)CrossRef ADS
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)CrossRef ADS
    Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef ADS
    Lascovich, J.C., Giorgi, R., Scaglione, S.: Evaluation of the sp 2 /sp 3 ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 47, 17–21 (1991)CrossRef ADS
    Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009)CrossRef ADS
    Morar, J.F., Himpsel, F.J., Hollinger, G., Jordan, J.L., Hughes, G., McFeely, F.R.: Carbon 1s excitation studies of diamond (111). I. Surface core levels. Phys. Rev. B 33, 1340–1345 (1986)CrossRef ADS
    Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013)CrossRef
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. PNAS 102, 10451–10453 (2005)CrossRef ADS
    Poncharal, P., Ayari, A., Michel, T., Sauvajol, J.-L.: Effect of rotational stacking faults on the Raman spectra of folded graphene. Phys. Rev. B 79, 1–4 (2009). (195417)
    Reina, A., Son, H., Jiao, L., Fan, B., Dresselhaus, M.S., Liu, Z.F., Kong, J.: Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 112, 17741–17744 (2008)CrossRef
    Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)CrossRef ADS
    Svensson, S., Eriksson, B., Maartensson, N., Wendin, G., Gelius, U.: Electron shake-up and correlation satellites and continuum shake-off distributions in X-ray photoelectron spectra of the rare gas atoms. J. Electron Spectrosc. Relat. Phenom. 47, 327–384 (1988)CrossRef
    Thomsen, C., Reich, S.: Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)CrossRef ADS
    Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)CrossRef ADS
    Wilson, J.I.B., Walton, J.S., Beamson, G.: Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 121, 183–201 (2001)CrossRef
    Xu, S.C., Man, B.Y., Jiang, S.Z., Liu, A.H., Hu, G.D., Chen, C.S., Liu, M., Yang, C., Feng, D.J., Zhang, C.: Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys. Lett. 11, 1–5 (2014). (096001) CrossRef
  • 作者单位:T. I. Milenov (1)
    I. Avramova (2)
    E. Valcheva (3)
    S. S. Tinchev (1)

    1. “E. Djakov” Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
    2. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113, Sofia, Bulgaria
    3. Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164, Sofia, Bulgaria
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
Here we present results on the deposition of graphene and graphene-related phases by chemical vapour deposition (CVD) method. The source of carbon is thermally decomposed acetone (C2H6CO) in Ar main gas flow at different temperatures depending on the substrate used. The deposition of graphene and/or graphene related phases is carried out on commercially available Cu, Ni, (Cu0.70 + Ni0.30), μ-metal (Fe0.16 + Ni0.77 + Cu0.05 + Cr0.2) and SS304 (Fe0.60 + Ni0.09 + Cr0.19 + Mn0.02 + Si0.008) metal foils. The obtained thin films are studied by optical microscopy, Raman and X-ray photoelectron spectroscopies. We determined the optimal temperature and fixed values of the remaining parameters of the CVD process for each substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700