Wetting Behavior and Reactivity Between AlTi6 Alloy and Carbon Nanotubes
详细信息    查看全文
  • 作者:M. Homa ; N. Sobczak ; J. J. Sobczak…
  • 关键词:AlTi6 ; carbon nanotubes ; interfaces ; MWCNT ; reactivity ; rod ; like TiC ; sessile drop
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:25
  • 期:8
  • 页码:3317-3329
  • 全文大小:3,736 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
  • 卷排序:25
文摘
Wetting behavior between molten AlTi6 alloy and nanoporous carbon substrate (carbon nanotubes paper) was investigated by a sessile drop method in vacuum at 800, 900, and 1000 °C. In order to avoid the effect of native oxide film on metal sample, an advanced capillary purification technique coupled with non-contact heating was applied. The AlTi6 drop did not wet the MWCNT paper immediately after deposition on the substrate at 800 °C, forming a contact angle of θ = 153°. The increase in temperature up to 900 °C and holding the system for 15 min also did not affect the contact angle (θ = 153  ± 1). Further heating above 930 °C at a rate of 5 °C/min caused a gradual lowering of contact angle down to ~130° and after about 10-min interaction at 1000 °C, it reached the final value of 123°. Structural investigations of solidified sessile drop AlTi6/MWCNT couple by scanning and transmission electron microscopy showed that high-temperature interaction between MWCNTs and molten AlTi6 alloy is accompanied with liquid metal infiltration of MWCNT substrate, fragmentation of MWCNTs, and formation of TiC in the form of rod-like crystallites and fine particles uniformly distributed in the metal matrix. The mechanism of MWCNT → TiC transformation in the AlTi6/MWCNT system by high-temperature liquid-assisted process is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700